
© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 1

ISMA
INTERNET STREAMING MEDIA ALLIANCE

Output Document Number TD00105
November 2007

TITLE: ISMA Ultravox Part 3: Transport of MPEG-4 Codecs
Status: External Provisional Specification

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 2

1. Introduction
This specification describes how MPEG-4 Elementary Streams are transported over Ultravox [5].
It is described how decoder configuration information is provided during session setup and how
synchronization between multiple Elementary Streams is achieved. In order to provide the
configuration information, a cacheable metadata frame is specified. Furthermore, a data message
is defined for the transport of the media data, i.e. the Access Units. This data message supports
fragmentation, aggregation, synchronization, and random access. The multiplex of several
streams (audio, video, data) is done on the Ultravox level.

2. Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this annex are to be
interpreted as described in RFC 2119 [6].

Throughout this document, all fields and variables are defined in network byte order.

3. MPEG-4 Configuration Message
MPEG-4 codecs typically require decoder configuration information which must be available
before the decoding of the media data. This information is usually provided out-of-band during
session setup which can be accomplished in Ultravox through the use of cacheable metadata [5].

The following Ultravox message contains the setup for a session with MPEG-4 codecs. A
Broadcaster MUST send this message prior to any Data Messages and SHOULD NOT update
this setup information during the remaining session. Distribution points MUST transmit this
message as the first data sent to each listener (as required for all cacheable metadata
messages).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Sync Byte | Flags |Class=3| Type=0xa01 |
|0 1 0 1 1 0 1 0| E|0 0 1 1|1 0 0 1 0 0 0 0 0 0 1 0|
+-+
| Length | Metadata ID |
| N=6+Nc | |
+-+
| Metadata Total Fragments | Metadata Fragment Index |
| | |
+-+
| MPEG4ConfigBox (Nc Byte) | End |
| ... |0 0 0 0 0 0 0 0|
+-+

Class (4bits) – 0x3 (Cacheable Metadata)
Type (12bits) – 0xa01 (MPEG-4 Configuration)
Length (16bits) – length of metadata specific fields (6 Byte) plus length of the

MPEG4ConfigBox (variable size, Nc Byte).
Payload – data which consists of the metadata specific fields and the MPEG4ConfigBox,

having together Length bytes.

The encryption flag (E) in the flags section of the Ultravox message SHALL be set to zero.

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 3

Note that MPEG-4 decoder configuration information is typically compact enough to fit into a
single Ultravox frame. Hence, Metadata Total Fragments is typically 0x0001 and Metadata
Fragment Index is typically 0x0000.

Besides the metadata specific fields (Metadata ID, Metadata Total Fragments, Metadata
Fragment Index) the MPEG-4 Configuration Message contains the MPEG4ConfigBox. The syntax
of this data record is derived from the ISO-FileFormat Box class [2] and contains all necessary
information for the initialization of the session. The decoder configuration is derived from the
MPEG-4 File Format (MP4, [3]).

Syntax
aligned(8) class MPEG4ConfigBox extends FullBox(‘m4co’,0,0) {

 MPEG4SessionBox(); // session-level parameters

 for(i=0; i<num_streams; i++) {

 MPEG4MediaBox(); // media-level parameters

 }

}

Semantics
The MPEG4ConfigBox is composed of a MPEG4SessionBox which contains all parameters
which are relevant on a session level plus a MPEG4MediaBox for the information on the media
level of each stream in the Ultravox session. These two data records are defined in the following
two subsections.

3.1 MPEG4SessionBox
The MPEG4SessionBox contains all necessary information on the session level, i.e. information
that is common to all media streams or required for the session setup. It follows directly after the
metadata related fields and has a fixed size.

Syntax
aligned(8) class MPEG4SessionBox extends FullBox(‘m4co’,0,0) {

 unsigned int(8) num_streams;

 unsigned int(32) time_scale;

 unsigned int(32) initial_delay;

}

Semantics
num_streams is an 8 bit unsigned integer, that indicates the number of streams in the

Ultravox session with a valid range of 1-255.
time_scale is a 32 bit unsigned integer, that specifies the time-scale for this session; this

is the number of time units that pass in one second. For example, a time coordinate
system that measures time in sixtieths of a second has a time scale of 60. A typical time
scale for MPEG-4 video is 90.000 while for audio typically the sampling rate is used (e.g.
48.000). In order to allow easy synchronization, the same time scale is used for all media
streams in one session. Hence, if several streams of different media are transmitted, the
“native time scale” has to be converted to the “session time scale”.

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 4

initial_delay is a 32 bit unsigned integer, that indicates the initial delay that a Listener
SHOULD wait and buffer incoming data before starting the playout of the session. The
delay is given in time-scale ticks of the session and corresponds to the amount of
buffered media time. Note that the sender side has to consider the constraints for each
media stream (e.g. re-ordering of B-frames) plus the resulting multiplexing delay which
results from interleaving audio and video (or other media) frames in the Ultravox stream
(see section 5 below). The Listener may observe the buffered media time in any stream
to decide on when to start the playout. It is the responsibility of the sender to comply with
the signaled value by appropriate multiplexing.

3.2 MPEG4MediaBox
The MPEG4MediaBox contains all necessary information for the initialization of MPEG-4
decoders. It is based on the MPEG-4 File Format (MP4, [3]).

Syntax
aligned(8) class MPEG4MediaBox extends FullBox(‘m4co’,0,0) {

 unsigned int(8) stream_ID;

 unsigned int(32) handler_type;

 SampleDescriptionBox();

}

Semantics
stream_ID is an 8 bit unsigned integer, that corresponds to the stream_ID used in Ultravox

data frames (see section 4 below). It is used to associate the content of Ultravox data
frames with the media format as described in the SampleDescripionBox. For each
stream within the same Ultravox session a different unique number (0-255) must be
selected. It is RECOMMENDED to use increasing stream_IDs for the different streams,
starting with 0.

handler_type is a 32 bit unsigned integer describing the nature of the media and the
necessary presentation unit. It contains typically one of the following values:
‘vide’ Video track
‘soun’ Audio track
Its value is mainly required as a switch value within the SampleDescriptionBox.

SampleDescriptionBox is a SampleDescription, as defined in [2]. Sample Description
boxes (‘stsd’) MUST contain exactly one sample entry (the entry_count field MUST be
equal to 1). Typically, this box is transmitted without modifications from the MP4 file [3] or
generated based on information necessary for the decoder and presentation unit. It may
also include information on the encryption of the media data based on ISMACryp [7].

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 5

4. MPEG-4 Data Message
The basic decoding unit in MPEG-4 is an Access Unit (AU), also referred to as a sample [1]. In
this section it is described how AUs are transported in Ultravox Data Messages and how AUs
from multiple Elementary Streams are multiplexed in one Ultravox session. To allow
synchronization, fragmentation, and aggregation, an additional layer between Ultravox and the
raw Access Unit is necessary which is defined below. For this purpose the Data Message
Class=0xa is reserved for the use of MPEG-4 transport. The structure of the MPEG-4 Data
Message is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Sync Byte | Flags | Class | Type |
|0 1 0 1 1 0 1 0|R R R R R R K E|1 0 1 0|Format | stream_ID |
+-+
| Length | Payload | End |
| N | (N Byte) |0 0 0 0 0 0 0 0|
+-+

Class (4bits) – 0xa (MPEG-4 Data Message)
Type (12bits) – 4 bits for Payload_Format and 8 bits for stream_ID. The

Payload_Format describes the structure of the Payload. Currently only a single
Payload_Format is defined (0x1, see below). The stream_ID MUST be one of the
stream_IDs signaled in the MPEG-4 Configuration Message during session setup. It
indicates the type and format of the media data contained in the Payload.

Length (16bits) – length of the Payload.
Payload – media data consisting of MPEG-4 Access Units, which are formatted according to

the Payload_Format. The Payload may contain several AUs and/or fragmented AUs
as defined in more detail below.

When AUs are encrypted with ISMACryp [7], the Encryption flag (E) in the flags section of the
Ultravox frame MUST be set.

If the Payload contains an AU, or the first fragment of an AU, which can be decoded
independently from other AUs, then the Key-Frame flag (K) in the flags section of the Ultravox
frame MUST be set.

4.1 Multiplex
Note that each MPEG-4 Data Message contains only one type of media, as indicated by the
stream_ID. This allows to multiplex audio and video (and possibly other data) on the Ultravox
level and avoids the need to introduce an additional multiplex format. Messages with different
stream_IDs MUST be sent interleaved using an appropriate interleaving-depth. I.e., one or
several consecutive MPEG-4 Data Messages of the same stream_ID may not represent more
media time than the interleaving-depth. Note that the interleaving-depth is not explicitly signaled
but must necessarily be smaller than the initial_delay as signaled in the MPEG-4
Configuration Message. A recommended value for the interleaving-depth is one second.

4.2 Payload Format
If the Payload_Format in the MPEG-4 Data Message is set to 0x1 then the payload contains a
single or a concatenation of several MPEG4MediaData records as defined below. For the case of
two records the resulting MPEG-4 Data Message is illustrated below. Other Payload_Format

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 6

values and corresponding payload formats are reserved for future use.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Sync Byte | Flags | Class |Format | stream_ID |
|0 1 0 1 1 0 1 0|R R R R R R K E|1 0 1 0|0 0 0 1| |
+-+
| Length | MPEG4MediaData #1 (N1 Byte) |
| N=N1+N2 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
: ... :
| |
+-+
| MPEG4MediaData #2 (N2 Byte) |
: ... :
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | End |
| |0 0 0 0 0 0 0 0|
+-+

Each MPEG4MediaData contains an Access Unit header followed by the Access Unit data. The
AU header contains flags which are required for fragmentation and random access as well as a
timestamp which is required for synchronization. The AU data is copied directly from the encoder
or file. The definition of the MPEG4MediaData is as follows:

Syntax
aligned(8) class MPEG4MediaData {

 bit(1) start;
 bit(1) end;

 bit(1) key;

 bit(5) reserved;

 unsigned int (32) timestamp;

 unsigned int (16) length; // of following AU data

 AUData();

}

Semantics
start is a flag that is set to 1 to indicate, that the following AUData is the first fragment of a

fragmented AU or a complete AU.
end is a flag that is set to 1 to indicate, that the following AUData is the final fragment of a

fragmented AU or a complete AU.
key is a flag that is set when the AUData is part of, or a complete reference, key or random

access frame.
reserved are 5 reserved bits which SHOULD be set to zero.
timestamp is a 32 bit unsigned integer that specifies the composition time of the AUData in

time-scale ticks. It is based on the time_scale as signaled during session setup in the
MPEG4ConfigBox. Note that the timestamp may wrap-around after an overflow.

length is a 16 bit unsigned integer, that defines the length of the following AUData. This
value MUST be in the range 1-65528.

AUData is either a complete AU or a fragment of an AU.

Note that the number of MPEG4MediaData records is derived from the total length of the payload
in the MPEG-4 Data Message. I.e., if the end of the Ultravox payload is not reached after parsing

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 7

one MPEG4MediaData record, another record follows. The entire size of an Access Unit is not
known instantly if the Access Unit has been fragmented (start and end bit are not both set). It can
be calculated by accumulating the length fields of all MPEG4MediaData records, that form an
Access Unit.

All Access Units and fragmented Access Units MUST be transmitted in decoding order, so that
fragments can be reassembled by concatenating all AUData units with the same timestamp in the
order they were received by the Listener. For AVC, each Access Unit is conveyed as stored in file
and hence contains the NALU length field. The size of the NALU length field is available from the
SampleDescriptionBox during session setup (see [2] and [4] for further information on the
NALU length field).

5. Synchronization
Since the payload format for MPEG-4 Data Message includes a timestamp for each AU and all
media streams use a common time_scale as indicated in the MPEG-4 Configuration Message,
a Listener can easily align the media streams in the playout time-line after tuning into an Ultravox
session.
The resolution of the time_scale determines how accurately audio and video (and other media)
can be aligned. If the time scale is too coarse (e.g. 1 time unit/second) then no appropriate
synchronization (e.g. lip-synch) is possible. On the other hand, at most one wrap-around of the
time stamp SHALL occur during the initial_delay which sets an upper limit on the resolution.
Typical values are in the range 8.000 – 90.000.

6. References
[1] ISO/IEC 14496-1:2003: “Information technology – Coding of audio-visual objects – Part 1:

Systems”.

[2] ISO/IEC 14496-12:2003: “Information technology – Coding of audio-visual objects – Part
12: ISO base media file format

[3] ISO/IEC 14496-14:2003: “Information technology – Coding of audio-visual objects – Part
14: MP4 file format”.

[4] ISO/IEC 14496-15: 2004: “Information technology – Coding of audio-visual objects – Part
15: Advanced Video Coding (AVC) file format”.

[5] Internet Streaming Media Alliance: ”Ultravox”, TBD.

[6] IETF RFC 2119: “Key words for use in RFCs to Indicate Requirement Levels”, S.
Bradner, March 1997.

[7] Internet Streaming Media Alliance: “ISMA 1.0 Encryption and Authentication”, Version
1.0, January 2004

© 2007 ISMA ISMA Ultravox Part 3 : Transport of MPEG-4 Codecs 8

Modification History
Date Revision Author Description of changes

02/06/05 Draft 0.1 Stefan Döhla,
Nikolaus Färber,
Jochen Issing

Initial version for 17th Forum

23/08/05 Draft 0.2 Stefan Döhla,
Nikolaus Färber,
Jochen Issing

- Use common time scale for all streams (which
eliminates the need for Synch-Message).

- Restructure MPEG-4 Configuration Message into
session-level and media-level parameters

- Introduce initial_delay parameter

