

OIPFOIPFOIPFOIPF

Release Release Release Release 2222 SpecificationSpecificationSpecificationSpecification

Volume Volume Volume Volume 5555 ---- DDDDeclarative eclarative eclarative eclarative AAAApplication pplication pplication pplication

EEEEnvironmentnvironmentnvironmentnvironment
[[[[VVVV2.2.2.2.0000]]]] –––– [[[[2020202010101010----09090909----00007777]]]]

OpenOpenOpenOpen IPTV ForumIPTV ForumIPTV ForumIPTV Forum

Page 2 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Open IPTV Forum

Postal address

Open IPTV Forum support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 43 83
Fax: +33 4 92 38 52 90

Internet
http://www.oipf.tv

Disclaimer

The Open IPTV Forum members accept no liability whatsoever for any use of this document.

This specification provides multiple options for some features. The Open IPTV Forum Profiles specification
complements the Release 2 specifications by defining the Open IPTV Forum implementation and deployment profiles.
Any implementation based on Open IPTV Forum specifications that does not follow the Profiles specification cannot

claim Open IPTV Forum compliance.

Copyright Notification

No part may be reproduced except as authorized by written permission.
Any form of reproduction and/or distribution of these works is prohibited.

Copyright 2010 © Open IPTV Forum e.V.

Page 3 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Contents
1 SCOPE ... 11

2 REFERENCES.. 12

2.1 NORMATIVE REFERENCES ... 12
2.2 OPEN IPTV FORUM REFERENCES ... 13

3 TERMINOLOGY AND CONVENTIONS ... 14

3.1 CONVENTIONS .. 14

3.2 DEFINITIONS ... 14

3.3 ABBREVIATIONS ... 16

4 DAE OVERVIEW .. 17

4.1 ARCHITECTURE OF DAE ... 17

4.1.1 Remote UI and box models (Informative) .. 17

4.2 GATEWAY DISCOVERY AND CONTROL ... 20
4.3 APPLICATION DEFINITION ... 20

4.3.1 Similarities between applications and traditional web pages .. 20
4.3.2 Differences between applications and traditional web pages .. 20
4.3.3 The application tree ... 21
4.3.4 The application display model .. 21

4.3.5 The security model .. 21

4.3.6 Inheritance of permissions .. 21

4.3.7 Privileged application APIs .. 21

4.3.8 Active applications list .. 22

4.3.9 Widgets ... 22
4.4 RESOURCE M ANAGEMENT ... 22

4.4.1 Application lifecycle issues .. 22

4.4.2 Caching of application files .. 23

4.4.3 Memory usage ... 23
4.4.4 Instantiating embedded objects and claiming scarce system resources .. 23
4.4.5 Media control .. 23
4.4.6 Use of the display .. 24
4.4.7 Cross-application event handling .. 25

4.5 PARENTAL ACCESS CONTROL .. 26
4.6 CONTENT DOWNLOAD .. 27

4.6.1 Download manager ... 27

4.6.2 Content Access Download Descriptor .. 28

4.6.3 Triggering a download .. 28

4.6.4 Download protocol(s) ... 29

4.7 STREAMING COD ... 29

4.7.1 Unicast streaming .. 29
4.7.2 Multicast streaming ... 30

4.8 SCHEDULED CONTENT .. 30

4.8.1 Conveyance of channel list information.. 30

4.8.2 Conveyance of channel list and list of scheduled recordings .. 31
4.9 DLNA RUI REMOTE CONTROL FUNCTION .. 32

4.9.1 Interfaces used by the DLNA RUI Remote Control Function .. 32
4.10 POWER CONSUMPTION .. 34

4.10.1 DAE application wake-up support .. 34

4.10.2 OITF hibernate support ... 35

4.10.3 State diagram for the power state .. 36

4.11 DISPLAY M ODEL .. 36

5 DAE APPLICATION MODEL ... 37

5.1 APPLICATION LIFECYCLE .. 37

5.1.1 Creating a new application .. 37

5.1.2 Stopping an application ... 38

5.1.3 Application Boundaries... 38

5.2 APPLICATION ANNOUNCEMENT & SIGNALLING .. 39

Page 4 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.2.1 Introduction ... 39
5.2.2 General .. 39
5.2.3 Broadcast related applications... 40

5.2.4 Service provider related applications .. 45

5.2.5 Broadcast independent applications .. 45

5.2.6 Switching between applications .. 46

5.2.7 Signalling format .. 46
5.2.8 Widgets lifecycle .. 52

5.3 EVENT NOTIFICATIONS .. 53

5.3.1 Event notification framework based on CEA 2014... 53

5.3.2 IMS event notification framework .. 55

6 FORMATS .. 63

6.1 CE-HTML ... 63
6.2 CE-HTML REFERENCED FORMATS .. 63
6.3 MEDIA FORMATS .. 63

6.3.1 Media format of A/V media except for audio from memory .. 63
6.3.2 Media format of A/V media for audio from memory ... 63
6.3.3 Media transport ... 63

6.4 SVG .. 63
6.4.1 Supporting SVG documents .. 64

6.4.2 Supporting DOM access between CE-HTML and SVG ... 64
6.4.3 Attention to DAE application developers ... 69

7 APIS ... 70

7.1 OBJECT FACTORY API ... 70

7.1.1 Methods .. 70
7.1.2 Examples ... 72

7.2 APPLICATION M ANAGEMENT APIS ... 73
7.2.1 The application/oipfApplicationManager embedded object ... 73
7.2.2 The Application class .. 77

7.2.3 The ApplicationCollection class ... 81

7.2.4 The ApplicationPrivateData class ... 81

7.2.5 The Keyset class ... 82
7.2.6 New DOM events for application support .. 84

7.2.7 Examples (informative)... 85

7.2.8 Widget APIs .. 86
7.3 CONFIGURATION AND SETTING APIS .. 87

7.3.1 The application/oipfConfiguration embedded object .. 87

7.3.2 The Configuration class .. 87

7.3.3 The LocalSystem class .. 90

7.3.4 The NetworkInterface class .. 95

7.3.5 The AVOutput class .. 96

7.3.6 The NetworkInterfaceCollection class .. 99

7.3.7 The AVOutputCollection class ... 99

7.4 CONTENT DOWNLOAD APIS .. 99
7.4.1 The application/oipfDownloadTrigger embedded object .. 99
7.4.2 Extensions to application/oipfDownloadTrigger .. 101

7.4.3 The application/oipfDownloadManager embedded object ... 102
7.4.4 The Download class .. 106

7.4.5 The DownloadCollection class ... 110

7.4.6 The DRMControlInformation class .. 110

7.4.7 The DRMControlInfoCollection class .. 111

7.5 CONTENT ON DEMAND METADATA APIS ... 111
7.5.1 The application/oipfCodManager embedded object ... 111
7.5.2 The CatalogueCollection class .. 113

7.5.3 The ContentCatalogue class .. 114

7.5.4 The CODFolder class .. 114

7.5.5 The CODAsset class ... 116

7.5.6 The CODService class .. 119

7.6 CONTENT SERVICE PROTECTION API .. 122

Page 5 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.6.1 The application/oipfDrmAgent embedded object ... 122

7.7 GATEWAY DISCOVERY AND CONTROL APIS .. 125

7.7.1 The application/oipfGatewayInfo embedded object ... 125

7.8 IMS RELATED APIS ... 128

7.8.1 The application/oipfIMS embedded object ... 129

7.8.2 Extensions to application/oipfIMS for communication services ... 133
7.8.3 The UserData class ... 137

7.8.4 The UserDataCollection class ... 138

7.8.5 The FeatureTag class .. 138

7.8.6 The FeatureTagCollection class .. 138

7.8.7 The Contact class .. 138
7.8.8 The ContactCollection class .. 139

7.9 PARENTAL RATING AND PARENTAL CONTROL APIS ... 139

7.9.1 The application/oipfParentalControlManager embedded object ... 139
7.9.2 The ParentalRatingScheme class .. 143

7.9.3 The ParentalRatingSchemeCollection class .. 144

7.9.4 The ParentalRating class ... 146

7.9.5 The ParentalRatingCollection class .. 148

7.10 SCHEDULED RECORDING APIS .. 149
7.10.1 The application/oipfRecordingScheduler embedded object .. 149
7.10.2 The ScheduledRecording class ... 151

7.10.3 The ScheduledRecordingCollection class ... 154

7.10.4 Extension to application/oipfRecordingScheduler for control of recordings .. 154
7.10.5 The Recording class .. 156

7.10.6 The RecordingCollection class ... 160

7.10.7 The Bookmark class .. 160

7.10.8 The BookmarkCollection class ... 160

7.11 REMOTE M ANAGEMENT APIS ... 161
7.11.1 The application/oipfRemoteManagement embedded object ... 161

7.12 METADATA APIS .. 163

7.12.1 The application/oipfSearchManager embedded object ... 163
7.12.2 The MetadataSearch class ... 167

7.12.3 The Query class... 170
7.12.4 The SearchResults class .. 171

7.13 SCHEDULED CONTENT AND HYBRID TUNER APIS ... 173

7.13.1 The video/broadcast embedded object .. 173

7.13.2 Extensions to video/broadcast for recording and time-shift .. 185

7.13.3 Extensions to video/broadcast for access to EIT p/f ... 195

7.13.4 Extensions to video/broadcast for playback of selected components.. 196
7.13.5 Extensions to video/broadcast for parental ratings errors ... 197

7.13.6 Extensions to video/broadcast for DRM rights errors ... 198

7.13.7 Extensions to video/broadcast for current channel information .. 200
7.13.8 Extensions to video/broadcast for creating channel lists from SD&S fragments 200
7.13.9 Extensions to video/broadcast for synchronization ... 200

7.13.10 The ChannelConfig class ... 202

7.13.11 The ChannelList class .. 207

7.13.12 The Channel class .. 208

7.13.13 The FavouriteListCollection class .. 214

7.13.14 The FavouriteList class .. 215

7.13.15 The ChannelScanOptions class .. 217

7.13.16 The ChannelScanParameters class ... 217

7.13.17 The DVBTChannelScanParameters class .. 217
7.13.18 The DVBSChannelScanParameters class... 219
7.13.19 The DVBCChannelScanParameters class .. 220

7.14 MEDIA PLAYBACK APIS ... 221

7.14.1 The CEA 2014 A/V Control embedded object ... 221

7.14.2 Extensions to A/V Control object for playback through Content-Access Streaming Descriptor 224
7.14.3 Extensions to A/V Control object for media queuing ... 224

7.14.4 Extensions to A/V Control object for trickmodes ... 225

7.14.5 Extensions to A/V Control object for playback of selected components .. 227
7.14.6 Extensions to A/V Control object for parental rating errors ... 227

Page 6 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.14.7 Extensions to A/V Control object for DRM rights errors ... 228
7.14.8 Extensions to A/V Control object for playing media objects .. 230
7.14.9 Extensions to A/V Control object for UI feedback of buffering A/V content... 231
7.14.10 Extensions to A/V Control object for volume control .. 232
7.14.11 DOM 2 events for A/V Control object ... 233

7.14.12 Playback of memory audio ... 233

7.15 M ISCELLANEOUS APIS .. 235

7.15.1 The application/oipfMDTF embedded object ... 235

7.15.2 The application/oipfStatusView embedded object .. 237

7.15.3 The application/oipfCapabilities embedded object ... 239

7.15.4 The Navigator class ... 240

7.15.5 Debug print API .. 240
7.16 SHARED UTILITY CLASSES AND FEATURES .. 240

7.16.1 The StringCollection class .. 240

7.16.2 The Programme class .. 241

7.16.3 The ProgrammeCollection class ... 247

7.16.4 The DiscInfo class ... 247
7.16.5 Extensions for playback of selected media components ... 247

7.17 DLNA RUI REMOTE CONTROL FUNCTION APIS .. 252

7.17.1 The application/oipfRemoteControlFunction embedded object ... 252

8 SYSTEM INTEGRATION ASPECTS ... 259

8.1 HTTP PROTOCOL .. 259

8.1.1 HTTP User-Agent header ... 259

8.1.2 HTTP X-OITF-RCF-User-Agent header .. 259

8.2 M APPING FROM APIS TO PROTOCOLS .. 259
8.2.1 Network (Common to Managed and Unmanaged Services) ... 260
8.2.2 OITF-IG Interface (Managed Services Only) ... 261

8.2.3 Network (Unmanaged Services only) ... 273

8.3 URI SCHEMES AND THEIR USAGE .. 279
8.4 DLNA RUI REMOTE CONTROL FUNCTION IMPLEMENTATION ... 280

8.4.1 Relationship between DAE application and control UI .. 281
8.4.2 XML UI Listing Provisioning ... 281

8.4.3 Retrieving the Control UI ... 283

8.4.4 Receiving and responding a message between the control UI in the Remote Control Device and OITF . 284

8.4.5 Notification to the Remote Control Device ... 286

8.4.6 Handling Multiple DAE applications and Multiple Remote Control Devices .. 287

9 CAPABILITIES .. 289

9.1 M INIMUM DAE CAPABILITY REQUIREMENTS ... 289

9.2 DEFAULT UI PROFILES ... 291

9.3 CEA-2014 CAPABILITY NEGOTIATION AND EXTENSIONS ... 295

9.3.1 Tuner/broadcast capability indication ... 296

9.3.2 Broadcast content over IP capability indication .. 297

9.3.3 PVR capability indication ... 297

9.3.4 Download CoD capability indication .. 298

9.3.5 Parental ratings.. 299
9.3.6 Extended A/V API support ... 299

9.3.7 OITF Metadata API support ... 299

9.3.8 OITF Configuration API support .. 300

9.3.9 IMS API Support .. 300

9.3.10 DRM capability indication .. 300

9.3.11 Media profile capability indication ... 301

9.3.12 Remote diagnostics support .. 302

9.3.13 SVG .. 302
9.3.14 Third party notification support .. 302

9.3.15 Multicast Delivery Terminating Function support .. 302

9.3.16 HTML5 video ... 302

9.3.17 DLNA RUI Remote Control Function support ... 303

9.3.18 Power Consumption .. 303

9.3.19 Other capability extensions ... 303

Page 7 (356)

 Copyright 2010 © Open IPTV Forum e.V.

9.3.20 Widgets ... 303

10 SECURITY .. 304

10.1 APPLICATION / SERVICE SECURITY ... 304
10.1.1 OITF requirements .. 304

10.1.2 Server requirements .. 304

10.1.3 Loading documents from different domains ... 305

10.1.4 Specific security requirements for privileged Javascript APIs .. 305
10.1.5 Permission names .. 308

10.2 USER AUTHENTICATION .. 309

10.3 DLNA RUI REMOTE CONTROL .. 309

11 DAE WIDGETS .. 310

11.1 WIDGETS PACKAGING AND CONFIGURATION ... 310

11.2 ACCESS REQUEST ... 310

11.3 WIDGET INTERFACE .. 310

11.4 DIGITAL SIGNATURE .. 311

ANNEX A. VOID .. 312

ANNEX B. CE-HTML PROFILING .. 313

B.1 CHANGES TO SECTION 5.2 ... 313

B.2 CHANGES TO SECTION 5.3 ... 313

B.3 CHANGES TO SECTION 5.4 ... 313

B.4 CHANGES TO SECTION 5.6.2 .. 317

B.5 CHANGES TO SECTION 5.7 ... 319

B.6 CHANGES TO THE ANNEXES ... 321

ANNEX C. DESIGN RATIONALE (INFORMATIVE) 323

C.1 THE APPLICATION MODEL ... 323

ANNEX D. CLARIFICATION OF DOW NLOAD COD, STREAMING COD AND CSP INTERFACES
(INFORMATIVE) .. 324

D.1 INTRODUCTION ... 324

D.2 L IST OF INTERFACES .. 325

D.3 ADDITIONAL NOTES ABOUT CONTENT-ON-DEMAND .. 328

ANNEX E. CONTENT ACCESS DESCRIPTOR SYNTAX AND SEMANTICS.. 329

E.1 CONTENT ACCESS DOWNLOAD DESCRIPTOR FORMAT .. 329

E.2 CONTENT ACCESS STREAMING DESCRIPTOR FORMAT .. 329

E.3 ABSTRACT CONTENT ACCESS DESCRIPTOR FORMAT .. 330

ANNEX F. CAPABILITY EXTENSIONS SCHEMA .. 334

ANNEX G. CLIENT CHANNEL LISTING FORMAT 336

ANNEX H. DISPLAY MODEL ... 339

H.1 LOGICAL PLANE M ODEL ... 339

H.2 INTERACTION WITH THE VIDEO /BROADCAST AND A/V CONTROL OBJECTS .. 340
H.3 GRAPHIC SAFE AREA (INFORMATIVE) ... 340

ANNEX I. HTML 5 VIDEO TAG SUPPORT .. 342

ANNEX J. DLNA RUI REMOTE CONTROL FUNCTION SEQUENCES 346

ANNEX K. ECMASCRIPT CONVENTIONS ... 352

ANNEX L. SVG VIDEO TAG SUPPORT ... 353

Page 8 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figures
Figure 1: i-Box Model .. 19

Figure 2: 2-Box Model ... 19

Figure 3: 3-box Model ... 19

Figure 5 - State diagram of OITF power states .. 36

Figure 6: Behaviour when the selected channel changes .. 42

Figure 7: Behaviour when the application signalling for the currently selected channel changes or when a running
broadcast-related application exits ... 44

Figure 8: General Event Notification Architecture on OITF and Remote UI Server ... 54

Figure 9: HNI-IGI transaction for outgoing SIP requests from a DAE application .. 56

Figure 10: HNI-IGI transaction for in-session incoming SIP request ... 58

Figure 11: What happens when the OITF is first turned on .. 60

Figure 12: User logs in using the DAE interface ... 61

Figure 13: Unsolicited message from the network .. 62

Figure 14: State diagram for embedded application/oipfDownloadManagerapplication/oipfDownloadManagerapplication/oipfDownloadManagerapplication/oipfDownloadManager objects 103

Figure 16: PVR States for recordNowrecordNowrecordNowrecordNow and timeshifting using video/broadcastvideo/broadcastvideo/broadcastvideo/broadcast ... 185

Figure 18: Main scenario .. 324

Figure 19: Logical Plane Model .. 339

Figure 20: Graphic Safe Area ... 341

Page 9 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Tables
Table 1: Events applicable for cross application event handling ... 26

Table 2: Application signalling ... 46

Table 3: DAE application control codes .. 49

Table 4: Supported application signalling features .. 51

Table 5: Key to status column ... 51

Table 6: HTMLObjectElementHTMLObjectElementHTMLObjectElementHTMLObjectElement interface ... 65

Table 7: WindowWindowWindowWindow interface .. 66

Table 8: DocumentViewDocumentViewDocumentViewDocumentView interface to be added to uDOM .. 66

Table 9: SVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElement interface to be added to uDOM ... 67

Table 10: DocumentDocumentDocumentDocument interface ... 67

Table 11: WindowWindowWindowWindow interface to be added to uDOM .. 67

Table 12: New DOM events for application support .. 85

Table 13: URI schemes and usages ... 280

Table 14: Base UI Profile Names .. 291

Table 15: Complementary UI Profile Name Fragments ... 293

Page 10 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Foreword
This Technical Specification (TS) has been produced by Open IPTV Forum.

This specification provides multiple options for some features. The Open IPTV Forum Profiles specification
complements the Release 2 specifications by defining the Open IPTV Forum implementation and deployment profiles.
Any implementation based on Open IPTV Forum specifications that does not follow the Profiles specification cannot
claim Open IPTV Forum compliance.

Introduction
The Open IPTV Forum Release 2 Specification consists of nine Volumes:

• Volume 1 - Overview,

• Volume 2 - Media Formats,

• Volume 2a – HTTP Adaptive Streaming

• Volume 3 - Content Metadata,

• Volume 4 - Protocols,

• Volume 4a – Examples of IPTV Protocol Sequences,

• Volume 5 - Declarative Application Environment,

• Volume 6 - Procedural Application Environment, and

• Volume 7 - Authentication, Content Protection and Service Protection.

The present document, the Declarative Application Environment Specification (Volume 5), specifies the DAE
functionality of the Open IPTV Forum Release 2 Solution.

Page 11 (356)

 Copyright 2010 © Open IPTV Forum e.V.

1 Scope
The Open IPTV Forum has developed an end-to-end solution to allow any consumer end-device, compliant to the Open
IPTV Forum specifications, to access enriched and personalized IPTV services either in a managed or a non-managed
network.

Its functional architecture specification [OIPF_ARCH2] defines a block called OITF which resides inside the residential
network. The OITF includes the functionality required to access IPTV services for both the unmanaged and the managed
network.

Part of these functionalities is the Declarative Application Environment (DAE): a declarative language based
environment (browser) based on CEA-2014 [CEA-2014-A] for presentation of user interfaces and including scripting
support for interaction with network server-side applications and access to the APIs of the other OITF functions.

The DAE is the focus of this specification.

The requirements for specifying this functionality are derived from the following sources:

• Open IPTV Service and Platform Requirement for R2 [OIPF_REQS2];

• Open IPTV Functional Architecture for R2 [OIPF_ARCH2].

Page 12 (356)

 Copyright 2010 © Open IPTV Forum e.V.

2 References

2.1 Normative references
[3GPP TS 24.229] 3GPP, TS 24.229, “IP Multimedia Call Control Protocol based on Session Initiation Protocol (SIP) and

Session Description Protocol (SDP) Stage 3 (Release 8)”

[CEA-2014-A] CEA, CEA-2014-A, (Including the August 2008 Errata) “Web-based Protocol Framework for Remote
User Interface on UPnP Networks and the Internet (Web4CE)”,

[TS 102 539] ETSI TS 102 539, “Digital Video Broadcasting (DVB); Carriage of Broadband Content Guide (BCG)
information over Internet Protocol (IP)

[TS 102 809] ETSI TS 102 809 “Digital Video Broadcasting (DVB); Signalling and carriage of interactive applications
and services in Hybrid broadcast/broadband environments”

[TS 102 851] ETSI TS 102 851, “Digital Video Broadcasting (DVB); Uniform Resource Identifiers (URI) for DVB
Systems”

[DVB-IPTV] ETSI TS 102 034.V1.4.1, “DVB-IPTV 1.3: Transport of MPEG-2 TS Based DVB Services over IP Based
Networks (and associated XML)”

[EN 300 468] ETSI EN 300 469, “Digital Video Broadcasting (DVB); Specification for Service Information (SI) in
DVB Systems”

[TISPAN] ETSI TS 183 063, “Telecommunications and Internet converged Services and Protocols for Advanced
Networking (TISPAN);IMS-based IPTV stage 3 specification”

[IEC62455] IEC, IEC 62455, “Internet protocol (IP) and transport stream (TS) based service access”

[RFC1321] IETF, RFC 1321, “The MD5 Message-Digest Algorithm”, April 1992.

[RFC2109] IETF, RFC 2109, “HTTP State Management Mechanism”, February 1997.

[RFC2119] IETF, RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, March 1997.

[RFC2326] IETF, RFC 2326, “Real Time Streaming Protocol (RTSP)”, April 1998.

[RFC2616] IETF, RFC 2616, “Hypertext Transfer Protocol -- HTTP/1.1”, June 1999.

[RFC3550] IETF, RFC 3550, “RTP: A Transport Protocol for Real-Time Applications”, July 2003.

[RFC3840] IETF, RFC 3840, “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”, August
2004.

[RFC3841] IETF, RFC 3841, “Caller Preferences for the Session Initiation Protocol (SIP)”, August 2004.

[MPEG-7] ISO/IEC 15938-5, “Multimedia Content Description Interface - Part 5:Multimedia description schemes”, ,
May 2003”

[JFIF] JPEG File Interchange Format, Version 1.02, Eric Hamilton, C-Cube Microsystems, September 1, 1992

[PRES] OMA, OMA-TS-Presence_SIMPLE_XDM-V1_1-20080627-A, “Presence XDM Specification”

[IM] OMA, OMA-TS-SIMPLE_IM-V1_0-20080820-D, “Instant Messaging using SIMPLE”.

[CSS3 UI] W3C, “CSS3 Basic User Interface Module”, May 2004.

[CSS3 BG] W3C, “CSS Backgrounds and Borders Module Level 3”, Working Draft 10 September 2008.

[DOM 2 Core] W3C, “Document Object Model (DOM) Level 2 Core Specification - Version 1.0”, November 2000

[DOM 2 Events] W3C, “Document Object Model (DOM) Level 2 Events Specification - Version 1.0”, November 2000

[DOM 2 HTML] W3C, “Document Object Model (DOM) Level 2 HTML Specification - Version 1.0”, January 2003

[DOM 2 Views] W3C, “Document Object Model (DOM) Level 2 Views Specification - Version 1.0”, November 2000

[DOM 3 Events] W3C, “Document Object Model (DOM) Level 3 Events Specification - Version 1.0”, December 2007

[HTML5] W3C, “HTML5 - A vocabulary and associated APIs for HTML and XHTML, Working Draft 25 August
2009”

[SVG Tiny 1.2] W3C, “Scalable Vector Graphics (SVG) Tiny 1.2 Specification”, August 2006

[Web-Storage] W3C, “Web-Storage”, Last Call Working Draft 22 December 2009

Page 13 (356)

 Copyright 2010 © Open IPTV Forum e.V.

[Widgets-Access] W3C, “Widgets 1.0: Access Requests Policy”, Last Call Working Draft, 8 December 2009

[Widgets-APIs] W3C, “Widgets 1.0: Widget Interface”, Candidate Recommendation, 22 December 2009

[Widgets-DigSig] W3C, “Widgets 1.0: Digital Signature”, Candidate Recommendation, 25 June 2009

[Widgets-Packaging] W3C, “Widgets 1.0: Packaging and Configuration”, Candidate Recommendation, 1 December 2009

[Window Object] W3C, “Window Object 1.0”, April 2006

[XHR] W3C, "The XMLHttpRequest Object", April 2008

[DLNA] DLNA Networked Device Interoperability Guidelines, August 2009

2.2 Open IPTV Forum references
[OIPF_SERV2] Open IPTV Forum, “Services and Functions for Release 2”, V1.0, October 2008.

[OIPF_REQS2] Open IPTV Forum, “Open IPTV Forum Service and Platform Requirements”, V2.0, December 2008.

[OIPF_ARCH2] Open IPTV Forum, “Open IPTV Forum, Functional Architecture – V2.0”, September 2009.

[OIPF_MEDIA2] Open IPTV Forum, “Release 2 Specification, Volume 2 - Media Formats”, V2.0, September 2010.

[OIPF_HAS2] Open IPTV Forum, “Release 2 Specification, Volume 2a – HTTP Adaptive Streaming”, V2.0, September
2010.

[OIPF_META2] Open IPTV Forum, “Release 2 Specification, Volume 3 – Content Metadata”, V2.0, September 2010.

[OIPF_PROT2] Open IPTV Forum, “Release 2 Specification, Volume 4 – Protocols”, V2.0, September 2010.

[OIPF_PROT2_EX] Open IPTV Forum, “Release 2 Specification, Volume 4a – Examples of IPTV Protocol Sequences”, V2.0,
September 2010.

[OIPF_PAE2] Open IPTV Forum, “Release 2 Specification, Volume 6 - Procedural Application Environment”, V2.0,
September 2010.

[OIPF_CSP2] Open IPTV Forum, “Release 2 Specification, Volume 7 - Authentication, Content Protection and Service
Protection”, V2.0, September 2010.

Page 14 (356)

 Copyright 2010 © Open IPTV Forum e.V.

3 Terminology and conventions

3.1 Conventions
All sections and annexes, except “Scope” and “Introduction”, are normative, unless they are explicitly indicated to be
informative.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

In sections of the present document whose presence is indicated by one of the capabilities defined in Section 9.3, use of
the [RFC2119] terms “MUST”, “SHALL” or “REQUIRED” applies only when the capability is made available to DAE
applications. They do not have the effect of making that section mandatory.

In this document, “application” means “declarative application” (browser based application) throughout the DAE
specification, as opposed to the “procedural applications” (Java based applications) defined in the PAE platform
specification.

In the documented APIs ECMAScript attributes are read-write unless otherwise specified.

The type “Integer” is not a valid Javascript type as is. It is used as a short hand notation for a subset of type “Number”
which includes only the numbers that can be written without a fractional or decimal component.

3.2 Definitions
Term Definition

Audio from memory Audible notifications and audio clips intended to be played from memory.

Broadcast related
application

Interactive application associated with a television or radio channel, with part of a television channel (e.g.
a particular program or show) or other television content. Often referred to as “red button” applications in
the industry, regardless of how they are actually started by the end user.

Broadcast independent
application

Interactive application not related to any TV channel or TV content or to the currently selected service
provider.

Control UI The Remote UI that controls DAE applications in the OITF, sent from an IPTV Applications server via the
OITF or pre-stored in the OITF, and rendered in the DLNA RUIC on the Remote Control Device.

DLNA RUIC A DLNA device with the role of finding and loading remote UI content exposed by a DLNA RUIS
capability and rendering and interacting with the UI content.

Note: This terminology references the DLNA RUI specification.

DLNA RUIS A DLNA Function in the OITF with the role of exposing and sourcing UI content.

Note: This terminology references the DLNA RUI specification.

Embedded object A software module that extends the capabilities of the OITF browser. Features provided by an embedded
object are made available to DAE applications through the methods and properties of a specific javascript
object.

HTML document An XHTML document and associated style and script files conforming to the restrictions and extensions
defined in the present document.

Key Event Event sent to a DAE application in response to input from the end-user. This input is typically generated
in response to the end-user pressing a button on a conventional remote control. It may also be generated by
some other mechanism on alternative input devices such as game controllers, touch screens, wands or
drastically reduced remote controls.

Mandatory The feature is an absolute requirement of the specification (a “MUST” as defined by RFC 2119).

Non-visual embedded
object

A non-visual embedded object is an embedded object that has no visible representation and cannot get
input focus

Optional The feature is truly optional (a “MAY” as defined by RFC 2119).

Remote Control Device A mobile or portable device which has the functionality of the DLNA RUIC.

Page 15 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Remote UI The display of a UI from one device on a second (remote) device across a network.

Service provider related
application

Interactive application related to the service provider selected through the service provider selection
process.

Trick Mode Facility to allow the User to control the playback of Content, such as pause, fast and slow playback,
reverse playback, instant access, replay, forward and reverse skipping.

Page 16 (356)

 Copyright 2010 © Open IPTV Forum e.V.

3.3 Abbreviations
In addition to the Abbreviations provided in Volume 1, the following abbreviations are used in this volume.

Abbreviation Definition

AJAX Asynchronous JavaScript and XML

CRID Content Reference Identifier

CSS Cascading style sheets

DOM Document object model

GIF Graphics Interchange Format

HE-AAC High Efficiency AAC

JPEG Joint Photographic Experts Group

PNG Portable Network Graphics

PSI Public Service Identifier

RCF Remote Control Function

SVG Scalable Vector Graphics

TLS Transport Layer Security

WAVE Waveform audio format

Page 17 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4 DAE overview
This specification builds on the capability model defined in CEA-2014 [CEA-2014-A] in order to expose to an IPTV
service provider the capabilities of any particular OITF.

In addition to what is defined in CEA-2014, other terminal capabilities are defined in Section 9.3 covering most of the
features defined in this specification. This document does not define whether these capabilities are mandatory or not.
Other documents or specifications need to address that. A small minimum set of capabilities are defined in Section 9.2.

Section 3.1 of this document defines how to interpret [RFC2119] terms like "SHALL" in sections of this document
included in a capability. In sections of this document which are not covered by capabilities, terms like "SHALL" apply as
used in each section.

4.1 Architecture of DAE
This section will introduce the basic concepts in the architecture of the DAE specification and their relationships. [CEA-
2014-A] is the baseline technology for the DAE. In particular the following requirements hold:

• The OITF SHALL support the i-Box model as defined in [CEA-2014-A] with the changes described in Annex B of
this document, in particular all requirements for an i-Box remote UI client as defined in Section 5.1.2, Sections 5.2
through 5.8 and Section 5.10 of CEA-2014-A (i.e. all Remote UI client requirements inside the subsections that are
marked as either “Mandatory for every RUIC” or “Mandatory for i-Box” except where modified by Annex B of this
document). This also includes (through reference) Annexes C, F, G, H, I of [CEA-2014-A]. The OITF SHALL also
support the following features which are not mandatory for the i-box model.

o 5.6.1 Multicast notifications
o 5.7.1 Streamed A/V Content
o 5.7.3 Full-screen video

• The OITF MAY support the 2-box and/or 3-box models defined in [CEA-2014-A]. Note that by default the interface
with the AG and IG deviates from CEA-2014’s 2-box model and 3-box model. An overview of these differences is
given in Section 4.1.1.

• A mandatory requirement in CEA-2014-A remains mandatory for the OITF, and recommended and optional
requirements in CEA-2014-A remain recommended and optional for the OITF, unless explicitly specified differently
inside this DAE specification. A detailed description of these differences can be found in Annex B.

• In case of a conflict between a CEA-2014 requirement and a normative statement in the DAE specification, the
normative statement in the DAE specification SHALL have priority.

4.1.1 Remote UI and box models (Informative)

The architecture overview from Section 4.1 of [CEA-2014-A] defines various box models. Next to the i-Box model for
accessing IPTV service providers or 3rd party internet services, it defines a 2-Box and 3-box model for in-home remote
UI. Box Models are divided by not only where the server resides but also where the UI control point reside to perform
discovery and setup of a remote UI connection. In case of the 2-Box and 3-box model the UI control point is a UPnP
control point that discovers in-home servers. In case of the 2-box model, there is a UPnP Remote UI control point inside
the OITF. If the UPnP remote UI control point resides in an external device (e.g. web pad, remote controller), whereby
the external device lists the Remote UI servers and sets up a UI connection between the OITF and Remote UI Server this
is called the 3-box model. An OITF that supports the 3-box model must be discoverable through UPnP itself, and expose
the profile information of a Remote UI client to the home network.

For the OITF, only the CEA-2014-A i-Box model is mandatory. The 2-box and 3-box models are optional. The default
interaction with the Application Gateway (AG), the IMS Gateway (IG) and the CSP gateway (CSPG) deviate in the
following manner. However, it is not precluded for an AG, IG, CSPG or other devices in the home network to expose
themselves as a regular UPnP Remote UI server that is compliant with CEA-2014, for example to serve a Remote UI of
its configuration screen to the OITF.

• The AG is similar to a level 1 remote UI server as defined in Section 5.1.1.2 of [CEA-2014-A], with the difference
that [Req. 5.1.1.2.d] is replaced with a different device description. The device description of the AG is defined in
Section 10.1.1.2 of [OIPF_PROT2]. The requirements [Req. 5.1.1.2.b] and [Req. 5.1.1.2.c] are now optional: a URL
to the XML UI Listing is provided by element <agUIServerURL> of the AG Description XML document. Note that

Page 18 (356)

 Copyright 2010 © Open IPTV Forum e.V.

the UPnP Device description of the AG MAY offer a CEA-2014-A compatible level 1 or level 2 remote UI server in
its UPnP device hierarchy that point to the same XML UI listing.

• The IG enables the discovery of IPTV services through the HNI-IGI interface as defined in [OIPF_PROT2]. This is
quite different from a level 1 or level 2 remote UI server. The details of the device discovery of the IG are defined in
Section 10.1.1.1 of [OIPF_PROT2].

Irrespective of the box models, and the discovery mechanism used, the OITF performs the following general steps to set
up a connection to any internet or in-home service:

1) Setup & Connect phase:

a) The OITF connects to a URL of a DAE application offered by a server over an HTTP connection. The OITF’s
capability profile is conveyed to the server, using the “User-Agent” HTTP header, to enable the server to adjust
the contents to the DAE capabilities of the OITF. An OITF that supports additional content formats (e.g. Flash)
can also convey these extensions to the server.

b) After setting up the connection, the XHTML and/or SVG contents that constitute the DAE application are
downloaded to the OITF.

c) This connection can also be set up by a separate UI Control Point in case of an OITF that supports a 3-box
model.

2) Presenting web content:

a) After downloading the XHTML and/or SVG contents, the DAE application may become active and display a
user interface as defined by the XHTML and/or SVG contents.

3) Controlling the UI:

a) Remote control, keyboard and mouse events can be handled within scripts.

b) Native control for web forms and spatial navigation must be supported.

c) Client-side scripting control for the playback of A/V content must be supported.

4) Dynamic UI Updates:

a) User interfaces can be dynamically updated by the server using a persistent TCP connection (NotifSocket) or
through XML updates over an HTTP connection (AJAX).

5) 3rd Party Notifications:

a) Notification messages linked to UI content can arrive on the OITF outside of an active UI interaction between
the OITF and the server.

4.1.1.1 i-Box model

The i-Box Model supports the remote presentation and control of UIs that reside on a server on the Internet (WAN). The
client (OITF) resides within the home domain, and is either non-discoverable and has a built-in “Connection setup and
control” to perform connection management related operations, or is discoverable by an external so called UI Control
Point within the home domain that allow the connection management related operations to be controlled by another
device. This configuration is depicted in the diagram below.

Page 19 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 1: i-Box Model

4.1.1.2 2-Box model

The 2-Box Model describes a configuration in which the server is discoverable in the home network. Since the client
is not discoverable, it must have a UI Control Point in order to be functional in the network to be able to discover an
AG device description (as defined in Section 10 of [OIPF_PROT2]), or a Remote UI server description as described
in Section 5.1 of [CEA-2014-A].

Figure 2: 2-Box Model

4.1.1.3 3-Box model

When both the Remote UI Server and the Remote UI Client are discoverable, the configuration can be described by
the 3-Box UI Model. This configuration has no restriction on the location of the UI Control Point for the discovery
and connection management, as illustrated in the diagram below.

Figure 3: 3-box Model

Remote UI Server

(Internet)

Connection
Setup and

control

OITF/DAE

(Non-Discoverable or
Discoverable)

UI Control
Point

= optional

Application Gateway
(AG) and/or RUI

Server

(Discoverable)

UI Control
Point

OITF/DAE

(Discoverable)

UI Control
Point

Application
Gateway (AG)

and/or RUI Server

(Discoverable)

UI Control
Point

OITF/DAE

(Non Discoverable)

UI Control
Point

Page 20 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4.2 Gateway discovery and control
This section describes how DAE applications discover the information of the gateway and subsequently interacts with the
gateway. The discovery of the IG and AG by the OITF are defined in Section 10.1 of [OIPF_PROT2]. The discovery
takes place prior to the DAE application being initialized. The information about the discovered gateways is made
available to DAE applications through the application/oipfGatewayInfo embedded object. DAE applications
can use this gateway information to interact with the discovered gateways (e.g. IG, AG, CSP gateway and so on). The
application/oipfGatewayInfo embedded object SHALL be made accessible through the DOM with the interface
as defined in Section 7.7.1.

Access to the functionality of the application/oipfGatewayInfo embedded object is privileged and SHALL
adhere to the security requirements defined in Section 10.1

4.3 Application definition
This section defines what is meant by the concept of a ‘DAE application’; which files and assets are considered to be part
of a DAE application and how this relates to DAE application security and lifecycle.

A DAE application is an associated collection of documents (typically ECMAScript, CSS and HTML or SVG
documents) from the same fully-qualified domain, unless specified differently in Section 5.1.1.3 and with the exception
of Widgets as specified in Section 4.3.9. Whilst the document is loaded within the browser, an additional browser object
(the oipfApplicationManager object), defined in Section 7.2.1 may be instantiated by a DAE application. The
ApplicationManager object provides access to the Application class defined in Section 7.2.2.

The difference between a DAE application and a traditional web page is that web pages are stand-alone with no formal
concept of a group of pages or a context within which a group of pages are loaded and execute. For this reason, the
definition and details of a DAE application focuses on the application execution environment and the additional
capabilities provided to DAE applications. The next subsections describe some of the differences. Additional details
about the DAE application lifecycle can be found in Section 5.1

4.3.1 Similarities between applications and traditi onal web pages

DAE applications are comprised of pages which are conceptually no different from traditional web pages. Both pages in
a DAE application and traditional web pages can include the contents of other documents. These included documents can
have a variety of types, including Cascading Style Sheets (CSS), ECMAScript, SVG, JPEG, PNG and GIF.

A dynamic DOM, combined with XMLHttpRequest, permits AJAX-style changes to the current page in a DAE
application or web page without necessarily replacing the entire document.

4.3.2 Differences between applications and traditio nal web pages

A DAE application provides shared context and state common to a number of pages – a concept which doesn't formally
exist in the web. Loading and unloading pages within the context of a DAE application is the same as loading and
unloading web pages. The application context includes information about the state of an application from the platform’s
perspective – permissions, priority (for example, which to terminate first in the event of insufficient resources) and
similar information that spans all documents within an application during the lifetime of that application.

An OITF MAY support the execution of more than one application simultaneously. Applications MAY share the same
screen estate in a defined and controlled fashion. This differs from multiple web pages, which are typically handled
through different browser “windows” or “tabs” and may not share the same screen estate concurrently (although the
details of this behaviour are often browser-dependent). This also differs from the use of frames, which, apart from
iframes, do not support overlapping screen estate. Where simultaneous execution of more than one application is
supported, both foreground and background applications SHALL be supported simultaneously.

Where simultaneous execution of more than one application is supported, applications SHALL be recorded within a
hierarchy of applications. Each object representing an application possesses an interface that provides access to methods
and attributes that are uniquely available to applications. For example, facilities to create and destroy applications can be
accessed through such methods.

Page 21 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4.3.3 The application tree

Where simultaneous execution of more than one application is supported, applications are organised into a tree structure.
Using the createApplication() method as defined in Section 7.2.2.2, applications can either be started as child
nodes of the application or as a sibling of the application (i.e. added as an additional child of this application’s parent).
The root node of an application tree is created upon loading an initial application URI or by creating a sibling of an
application tree’s root node. An OITF MAY keep track of multiple application trees. Each of these individual application
trees are connected to a hidden system root node maintained by the OITF that is not accessible by other applications.

Applications created while the DAE environment is running (e.g. as a result of an external notification) that are not
created through createApplication() SHALL be created as children of the hidden system root node.

4.3.4 The application display model

Applications SHALL be displayed on the OITF in one of the application visualization modes as defined in Section 4.4.6.

The mode used SHALL be determined prior to initialisation of the DAE execution environment and shall persist until
termination or re-initialization of the DAE execution environment. The means by which this mode is chosen is outside
the scope of this specification.

Each application has at least one associated DOM Window object and DOM Document object that represents the
document or documents that are currently loaded for that application. Even “windowless” applications that are never
made visible have an associated DOM Window object.

4.3.4.1 Manipulating an application’s DOM Window ob ject

Standard DOM Window methods are used to resize, scroll, position and access the application document (see Section
4.4.6). Many browsers restrict the size or location of windows; these restrictions SHALL NOT be enforced for windows
associated with applications within the browser area. Any area of the display available to DAE applications may be used
by any application. Thus, ‘Widget’-style applications can create a small window that contains only the application
without needing to be concerned with any minimum size restrictions enforced by browsers.

4.3.5 The security model

Each application has a set of permissions to perform various privileged operations within the OITF. The permissions that
are granted to an application are defined by the intersection of three permission sets:

1) The permissions requested by the application, using the mechanism defined in Section 10.

2) The permissions supported by the OITF. Some permissions may not be supported due to capability restrictions (e.g.
the permission_pvr permission will never be granted on a receiver that does not support PVR capability).

3) The permissions that may be granted, as determined by user settings or configuration settings specified by the
operator (e.g. blacklists or whitelists; see Section 10 for more information). This is a subset of (2), and may be
different for different users.

4.3.6 Inheritance of permissions

Applications created by other applications (e.g. using the methods described in Sections 5.1.1.2 or 5.1.1.3) SHALL NOT
inherit the permissions issued to the parent application. The permissions granted to the new application will be defined by
the mechanism specified in Section 10.

When an application uses cross-document messaging as defined in [HTML5] to communicate with another application,
any action carried out in response to the message SHALL take place in the security context of the application to which
the message was sent. Applications SHOULD take care to ensure that privileged actions are only taken in response to
messages from an appropriate source.

4.3.7 Privileged application APIs

The privilege model implemented with applications is based upon requiring access to the Application object
representing an application in order to access the privileged functionality related to application lifecycle management and
inter-application communication.

Page 22 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4.3.7.1 Compromising the security

Since applications have access to Application objects, it is possible for applications to compromise the security of the
framework by passing these objects to untrusted code. For example, an application could raise an event on an untrusted
document and pass a reference to its Application object in the message. Where simultaneous execution of more than
one application is supported, any calls to methods on an Application object from pages not running as part of an
application from the same provider SHALL throw an error as defined in Section 10.1.1.

4.3.8 Active applications list

Where simultaneous execution of more than one application is supported, the OITF SHALL maintain a list of application
nodes ordered in a “most recently activated” order – the active applications list. This list is used by the cross-application
event dispatch algorithm as defined in Section 4.4.7 and is not directly visible to applications.

An application is activated through calling the activateInput() method of the application node. This marks an
application as active and SHALL insert the application at the start of the active application list (removing it from the list
first if it is already present).

An application is deactivated through the deactivateInput() method of the application node. This marks an
application inactive and SHALL remove it from the active application list.

The currently active application is the application at the start of the active application list.

This specification does not define any behaviour if more than one copy of the browser is executing.

4.3.9 Widgets

DAE Widgets are a specialization of DAE applications as defined in Section 4.3 of this document and share aspects with
W3C Widgets.

W3C Widgets are standardized by the “Widgets 1.0 family of specifications” as described in Section 1.4 of [Widgets-
Packaging]. Section 11 of this document specifies which parts of W3C Widgets specifications are in supported by DAE
Widgets. From here on, when using the word “Widget” we will refer to DAE Widgets as defined in this specification.

Widgets can be primarily seen as packaged DAE applications. Since they are packaged, it is possible to have a single
download and installation on an OITF. Widgets may also be installed on an OITF via non-HTTP distribution channels
and even over off-network channels (e.g. a USB thumb drive). Packaging also provides an easy way to deploy and/or
update applications on the OITF when it is installed in the home. The packaging and configuration of a DAE Widget is
described in Section 11.1.

Since DAE Widgets are DAE Applications everything that is defined for a DAE Application is also applicable to a
Widget unless specified. Furthermore Widgets have several specific features as defined in Section 11.

4.4 Resource Management
This section describes how resources (including non-granular resources such as memory and display area) are shared
between multiple applications that may be running simultaneously. Applications SHOULD be able to tolerate the loss of
scarce resources if they are needed by another application, and SHOULD follow current industry best practises in order
to minimize the resources they consume.

This specification is silent about the mechanism for sharing resources between DAE applications and other applications
running on the OITF. In the remainder of this section and this document, the term application refers solely to DAE
applications

4.4.1 Application lifecycle issues

Where simultaneous execution of more than one application is supported, if an application attempts to start and not
enough resources are available, the application with the lowest priority MAY be terminated until sufficient resources are
available for the new application to execute or until no applications with a lower priority are running. Applications
without a priority associated with them (e.g. applications started by the DRM agent, see Section 5.1.1.6) SHALL be
assumed to have a priority of 0x7F.

Page 23 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Applications may register a listener for ApplicationUnloaded events (see Section 7.2.1.4) to receive notification of
the termination of a child application where simultaneous execution of more than one application is supported.

Failure to load an asset (e.g. an image file) or CSS file due to a lack of memory SHALL have no effect on the lifecycle of
an application, but may result in visual artefacts (e.g. images not being displayed). Failure to load an HTML file due to a
lack of memory MAY cause the application to be terminated.

4.4.2 Caching of application files

Application files MAY be cached on the receiver in order to improve performance; this specification is silent about the
use of any particular caching strategy.

4.4.3 Memory usage

Applications SHOULD use current industry best practises to avoid memory leaks and to free memory when it is no
longer required. In particular, applications SHALL unregister all event listeners before termination, and SHOULD
unregister them as soon as they are no longer required.

Where available, applications SHALL use explicit destructor functions to indicate to the platform that resources may be
re-used by other applications.

Applications MAY use the gc() method on the application/oipfApplicationManager embedded object to
provide hints to the OITF that a garbage collection cycle should be carried out. The OITF is not required to act on these
hints.

The LowMemory event described in Section 7.2.1.4 SHALL be generated when the receiver is running low on memory.
The amount of free memory that causes this event to be generated is implementation dependent. Applications may
register a listener for these events in order to handle low-memory situations as they choose best.

4.4.4 Instantiating embedded objects and claiming s carce system
resources

The objects defined in Section 7 of this specification are embedded objects. These are typically instantiated through the
standard DOM 2 methods for creating HTML objects or the oipfObjectFactory as defined in Section 7.1.

All embedded objects as defined in Section 7 SHALL NOT claim scarce system resources (such as a hybrid tuner) at the
time of instantiation. Hence, instantiation SHALL NOT fail if the object type is supported (and sufficient memory is
available).

For each embedded object for which scarce resource conflicts may be a problem, the state diagram and the accompanying
text define how to deal with claiming (and releasing) scarce system resources.

NOTE: instantiated embedded objects do not have to be added to the DOM tree in order for their ECMAScript API to be
usable.

4.4.5 Media control

If insufficient resources are available to present the media, the attempt to play the media SHOULD fail except for the
specific case of starting to play audio from memory (see below). For the video/broadcast object, this shall be indicated by
a ChannelChangeError event with a value of 11 for the error state. For an A/V Control object, the error property
shall take the value 3.

Instantiation of a video/broadcast or A/V Control object does not cause any scarce resources to be claimed. Scarce
resources such as a media decoder are only claimed following a call to the setChannel(),
bindToCurrentChannel(), nextChannel() or prevChannel() methods on a video/broadcast object or
the play() method on an A/V Control object. By implication, instantiating a video/broadcast or A/V Control
object does not cause the media referred to by the object’s data attribute to start playing immediately. See Section
7.13.1.1 for details of when scarce resources are released by a video/broadcast object and Section 7.14.1.1 when
scarce resources are released by an A/V Control object.

Page 24 (356)

 Copyright 2010 © Open IPTV Forum e.V.

In the specific case of a request to play audio from memory while broadcast or broadband streaming audio is being
played and where the terminal does not support mixing the audio from memory with the already playing audio, the
following shall apply;

• The audio from memory shall have priority and shall interrupt the already playing audio.

• The interrupted presentation shall be resumed automatically by the terminal when the interrupting audio ends.

When audio from memory is interrupted by a resource loss, or when streaming video or audio presentation is interrupted
by a resource loss caused by another request for streaming audio or video presentation, the presentation is cancelled and
SHALL NOT be restored automatically by the OITF.

This specification is intentionally silent about handling of resource use by embedded applications including scheduled
recordings.

4.4.6 Use of the display

A compliant OITF SHALL support at least one of the following application visualization modes for managing the display
of applications:

1) Multiple applications may be visible simultaneously, with the OITF managing focus between applications, but with
DAE applications managing their own size, position and visibility. In this mode the following holds:

a) Many browsers restrict the size or location of windows; in this application visualization mode these restrictions
SHALL NOT be enforced for windows associated with applications within the browser area. Any area of the
display available to DAE applications may be used by any application, and no minimum size is enforced for
applications. An application may choose to resize or display its DOM Window as appropriate, using properties
and methods on the DOM Window object. If this application visualization mode is supported, the following
properties and methods SHALL be supported on the window object in addition to what is stated in [CEA-2014-
A]: resizeTo(), moveTo(), and screen.

Note that the display of applications exceeding the maximum size of the browser area or of applications partially
positioned outside the browser area may be cropped.

b) applications from the same service provider that are intended to run simultaneously SHOULD take care to co-
ordinate their use of the display in order to ensure that important UI elements are not obscured.

2) Multiple applications may be visible simultaneously, with the OITF managing the size, position, visibility and focus
between applications. In this case methods resizeTo() and moveTo() are either not supported on the Window
object, or have no effect whilst the OITF renders applications in this mode.

3) Only one application is visible at any time; switching to a different application either hides the currently-visible
application (where simultaneous execution of more than one application is supported) or terminates the currently
visible application (where simultaneous execution of more than one application is not supported). The mechanism
for switching between applications is implementation-dependent. In this case, the show(), hide(),
activateInput() and deactivateInput() methods of the Application object provide hints to the
execution environment about whether the user should be notified that an application requires attention. The
mechanism for notifying the user is outside the scope of this specification.

Applications SHALL be created with an associated DOM Window object, that covers the display area made available by
the OITF to a DAE application. The size of the DOM Window can be retrieved through properties ‘innerWidth’ and
‘innerHeight’ of the DOM Window object.

Any areas of the browser area outside the DOM Window that become visible when it is resized SHALL be transparent –
any video (if the hardware supports overlay as per the <overlay*> elements defined in Section 9.2 for the capability
profiles) or applications (if multiple applications can be visible simultaneously) with a lower Z-index will be visible
except where the application has drawn UI elements.

Broadcast-related and service provider related applications SHALL initially be created as invisible to avoid screen flicker
during application start-up. Once loaded (as might be indicated through an onload event handler), a broadcast-related

Page 25 (356)

 Copyright 2010 © Open IPTV Forum e.V.

application then typically calls the show() and activateInput() methods of its parent Application object.
Broadcast-independent applications SHALL initially be created as visible and need not call these methods.

If the application does not ever need to be visible, then its DOM Window object will never be shown. In that case, the
application should take steps to avoid being formatted to reduce computation and memory overheads. This is typically
accomplished by setting the default CSS style of the document’s BODY element to display: none.

Because all applications have associated DOM Window objects, it is possible to make any application visible even if it is
not normally intended to be visible. This is of particular benefit during debugging of hidden service type applications.

The DOM Window for an application cannot interact with other DOM Window objects of other applications in the system
except through the application API. In other words, scripts that are part of the document being displayed inside a DOM
Window object cannot discover other applications without going through the application API, which acts as a single point
of security control.

The default background color of the root of the document (i.e. the <html> rendering ‘canvas’) SHALL be a non-
transparent color and SHOULD be white as most browsers, unless explicitly overriden with the following (or an
equivalent) CSS construct to allow the underlying video to be shown for those areas of the screen that are not obscured
by overlapping non-transparent (i.e. opaque) children of the <body> element:

html { background-color: transparent; }
body { background-color: transparent; }

Changing the visibility of an application by calling method show() or hide() on the Application object SHALL
NOT affect its use of resources. The application still keeps running and listens to events unless the application gets
deactivated (see Section 4.3.8) or destroyed (see Section 5.1.2).

4.4.7 Cross-application event handling

As defined in [DOM 2 Events], standard DOM events are raised on a specific node within a single document. This
specification extends the event capability of the OITF through cross-application events handling, but does not change the
DOM2 event model for dispatching events within documents. Where simultaneous execution of more than one
application is supported, an OITF SHALL implement the cross-application events and cross-application event handling
model described in this section.

1) An OITF SHALL implement the following cross-application event handling model. Cancelling the propagation of an
event in any phase SHALL abort further raising of the event in subsequent phases: If an event is eligible for cross-
application event handling (see below for more information) and is targeted at a node in the most recently activated
application, then dispatch the event to that node using the standard DOM 2 bubbling/capturing of events. Default
actions normally taken by the browser upon receipt of an event SHALL be carried out at the end of this step, unless
overridden using the existing DOM 2 methods (i.e. using method preventDefault()).

2) If the cross-application event is not prevented from being propagated beyond the document root node of the
application by using the exist DOM 2 methods, the event is dispatched to other active applications in the application
hierarchy using the active applications list described in Section 4.3.8. The OITF SHALL iterate over the applications
in the active application list, from most recently activated to least recently activated, dispatching the event to the
Application object of each application in turn. Note that the event SHALL NOT be dispatched to the document,
and default browser action SHALL NOT be carried out during this phase. Cancelling the propagation of an event in
this phase SHALL abort further raising of the event in subsequent applications.

Event listeners for cross-application events are registered and unregistered using the same mechanism as for DOM2
events. Listeners for cross-application events may be registered on the Application object as well as on nodes in the
DOM tree.

The following events are valid instances of cross-application events and are applicable for cross application event
handling:

System
event Description

KeyPress Generated when a key has been pressed by the user. May also be generated when a key

Page 26 (356)

 Copyright 2010 © Open IPTV Forum e.V.

System
event Description

is held down during a key-repeat.

KeyUp Generated when a key pressed by the user has been released.

KeyDown Generated when a key has been pressed by the user.

Table 1: Events applicable for cross application event handling

The KeyPress, KeyUp and KeyDown events are all targeted cross-application events. The events are targeted at the
node that has the input focus.

All events dispatched using the standard dispatchEvent() method are normal DOM events, not cross-application
events. As defined in Annex B bullet “Changes to 5.4”, the OITF SHALL support the window.postMessage()
method for cross-document messaging as defined in [HTML5]. The method takes two arguments; a message (of type
String) to be dispatched and the targetOrigin, which defines the expected origin (i.e. domain) of the target window, or “*”
if the message can be sent to the target regardless of its origin. The target of the event is the “window” of a specific
application. Applications can use this method to send events to other applications. The receiving application MAY
receive those events and interpret them, or MAY dispatch them in its DOM using standard DOM dispatchEvent()
methods.

The visibility of an application SHALL NOT affect the cross-application event handling algorithm as defined above – an
active application SHALL receive cross-application events even when it is not visible.

Incoming key events are dispatched using the cross-application event handling algorithm as defined above.

NOTE: This event dispatch model enables key events to be dispatched to multiple applications. Applications wishing to
become the primary receiver for key events SHOULD call Application.activateInput(). Even though
Application.activateInput() is called, another application may subsequently be activated. In order to ensure
that sensitive key input (e.g. PINs or credit card details) is limited only to the application it is intended for, applications
SHOULD check that they are the primary receiver of the key events (using the Application.isPrimaryReceiver
property and/or the ApplicationPrimaryReceiver and ApplicationNotPrimaryReceiver events defined in
Section 7.2.6) and SHOULD ‘absorb’ key events by calling the stopPropagation() method on the DOM2 key
event.

4.4.7.1 Behaviour of the BACK key

If a remote features a “back” or “back up” key, or one offering similar functionality, the OITF SHALL handle this key as
described below:

1) A VK_BACK key event SHALL be dispatched to applications following the normal key handling process described in
Section 4.4.7

2) If the default behaviour of the key event is not stopped by an application using preventDefault(), then the
OIPF MAY load the previous page in its history list for DAE applications.

4.5 Parental access control
The present document permits a number of different approaches to parental access control.

a) Enforcement in the network.

An IPTV service provider MAY manage parental access control completely in the network. Applications
running on application servers back in the network MAY decide to block access to content or arrange a DAE
application to ask for a PIN code as necessary. This approach can apply to any kind of content - streaming on-
demand content, IP broadcast content and to downloaded content.

No specific support is needed for this approach in the specification.

Page 27 (356)

 Copyright 2010 © Open IPTV Forum e.V.

b) Enforcement in the OITF CSP / CSPG for protected MPEG-2 TS content

IPTV service providers MAY use the content protection mechanism for protected content to enforce access
control to protected content. If used, this enforcement will happen in the OITF and in some cases in the CSP
Gateway as well. In this approach, the content protection mechanism in the OITF would ask for PIN codes as
needed.

The OITF CSP/CSPG-based enforcement of this approach and link to DAE API and events are defined in:

� Section 4.1.5.1 of [OIPF_CSP2], for CSP terminal centric approach,

� Sections 4.2.2, 4.2.3.4.1.1.5 and 4.2.3.4.1.1.6 of [OIPF_CSP2] for CI+ CSP Gateway centric approach

� Sections 4.2.2 and 4.2.4.5.1 of [OIPF_CSP2] for DTCP-IP CSP Gateway centric approach

c) enforcement in the OITF

OITFs MAY enforce parental access controls themselves. Examples include embedded applications offering
access to:

� IP delivered content based on information delivered to the metadata CG client.

� classical broadcast content in hybrid OITFs

� content delivered to the OITF (either streaming or downloaded)

In approaches b) and c), PIN dialogs would be generated by code forming part of the OITF implementation. The APIs in
Section 7.9 provide some control over these dialogs. The PIN would typically be configured by an embedded application
but MAY also be configured by a DAE application using the optional APIs defined in Section 7.3.2 of the present
document.

These approaches b) and c) are reflected in a number of failure modes as defined in the following Sections of the
specification;

• For broadcast channels (both IP and hybrid), in Section 7.13.1, see onChannelChangeError where errorState 3 is
defined as "parental lock on channel"

• Parental rating errors and parental rating changes during playback of A/V content through the CEA-2014 A/V
embedded object and the video/broadcast object are reported according to the mechanism described in 7.14.6
and 7.13.5 respectively.

NOTE: Due to the variation in regulatory requirements and deployment scenarios, the present document is intentionally
silent about which of these approaches or combination of approaches is used.

4.6 Content download
This requirements in this section apply if the <download> element has been given value true in the OITF’s capability
profile as specified in Section 9.3.4.

4.6.1 Download manager

An OITF SHALL support a native download manager (i.e. “Content Download” component) to perform the actual
download and storage of the content, and which allows the user to manage (e.g. suspend/resume, cancel) and monitor the
download, in a consistent manner across different service providers. The download manager SHALL continue
downloading as a background process even if the browser does not have an active session with the server that originated
the download request anymore (e.g. has switched to another DAE application), even if the OITF restarts or even if the
OITF suffers a network failure. The download manager continues with the download as a background process until it
succeeds or the user has given permission to terminate the download. (see Section 4.6.4 on HTTP Range support to
resume HTTP downloads after a power/network failure).

The native download manager SHALL be able to offer a visualization of its status through the
application/oipfStatusView embedded object as defined in Section 7.15.2.1.

Page 28 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the attribute manageDownloads of the <download> element in the client capability capability description is
unequal to “none”, the native download manager SHALL offer control over the active downloads through the Javascript
API defined by the application/oipfDownloadManager embedded object in Section 7.4.3.

NOTE 1: Once (sufficient data of) the content has been downloaded, the content MAY be played back using a native
application, and MAY be played back using an A/V control object. In the latter case, see method setSource() in
Section 7.14.8 for more information.

NOTE 2: Annex D clarifies the content download usage scenario in more detail

4.6.2 Content Access Download Descriptor

An OITF SHALL support parsing and interpretation of the Content Access Download Descriptor document format with
the specified semantics, syntax and MIME type as specified in Annex E.

4.6.3 Triggering a download

An OITF SHALL support a non-visual embedded object of type application/oipfDownloadTrigger, with the
Javascript API as defined in Sections 7.4.1 and 7.4.2 to trigger a download.

The following subsections define some details about the different ways of triggering a download.

4.6.3.1 Using the registerDownload() method

The registerDownload() method takes a Content Access Download Descriptor as one of its arguments and passes it
to the underlying native download manager in order to trigger a download. The following requirements apply:

• The Content Access Download Descriptor MAY be created in Javascript or MAY be fetched using
XMLHttpRequest. To this end the OITF SHALL pass the data inside the Content Access Download Descriptor
into the XMLHttpRequest.responseXML property in Javascript for further processing, if the OITF encounters an
HTTP response message with the Content-Type application/vnd.oipf.ContentAccessDownload+xml,
as the result of an XMLHttpRequest.

NOTE: The behaviour in other cases when the OITF encounters an HTTP response message with the Content-Type
application/vnd.oipf.ContentAccessDownload+xml, for example whilst following a link as specified
by an anchor element (<a>), is not specified in this document.

• If the OITF supports a DRM agent with a matching DRMSystemID as per Section 9.3.10, the OITF SHALL pass
included DRM-information as part of the <DRMControlInformation> elements of a Content Access Download
Descriptor to the DRM agent.

• If the Content Access Download Descriptor contains multiple content items to be downloaded, then all items are
considered to belong together. Therefore, the download of each individual content item has the same download
identifier in that case (whereby the ContentID may be used for differentiation). The order by which the items are
downloaded is defined by the OITF.

4.6.3.2 Using the registerDownloadURL() method

The registerDownloadURL() method takes a URL as one of the arguments and passes it to the underlying native
download manager in order to trigger a download. The URL MAY point to any type of content. The URL MAY also
point to a Content Access Download Descriptor (i.e. with argument contentType having value
“application/vnd.oipf.ContentAccessDownload+xml”). In that case, the method returns a download
identifier. The OITF will then fetch the Content Access Download Descriptor, after which the same must happen as if
method registerDownload() as defined in Section 4.6.3.1 with the given Content Access Download Descriptor as
argument was called.

4.6.3.3 Using the optional registerDownloadFromCRID () method

The registerDownloadFromCRID() method is an optional method as defined in Section 7.4.2 and takes a Content
Reference Identifier (CRID) as one of its arguments that is passed to the underlying native download manager in order to
trigger a download.

Page 29 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4.6.3.4 General behaviour regarding triggering a do wnload

The following are general behavioural requirements apply to triggering downloads:

1) Fetching the content will typically be initiated immediately. However, the OITF MAY defer the download to a later
time.

2) An OITF SHOULD offer an easy way to continue the UI interaction with the server from which a download has
been initiated, e.g. allowing him/her to continue browsing on the page that triggered the download.

3) An OITF SHOULD inform the user if the content-type of a content item being retrieved cannot be interpreted by the
OITF.

4.6.4 Download protocol(s)

The OITF SHALL support the HTTP protocol for download as specified in Section 5.2.3 of [OIPF_PROT2]. In addition,
the OITF SHALL support the following requirements:

1) As specified in Section 5.2.3 of [OIPF_PROT2], if a server offers a content item for download using HTTP, the
server SHALL make sure that HTTP Range requests as defined in [RFC2616] are supported for HTTP GET requests
to the URI of that downloadable content item, in order to be able to resume downloads (e.g. after power or network
failure).

2) If the OITF receives an HTTP 404 “File Not Found” status code, the OITF SHALL stop its attempts to resume the
download, and go to a “Failed Download” state. The handling of other error codes is implementation dependent.

3) If after downloading a content item the size of the downloaded content item does not match the indicated size
parameter or the value for the optional attribute MD5Hash of the given <ContentURL> does not match the hash of
the downloaded content, the OITF SHOULD remove the downloaded content item.

 Integration with download protocols other than HTTP are not specified in this document.

4.7 Streaming CoD
This section defines the content-on-demand streaming interfaces for both DRM-protected and non-DRM protected
content.

4.7.1 Unicast streaming

An OITF SHALL support unicast streaming by setting the data property of the CEA-2014 A/V Control object to any of
the following three types of value:

1) A Public Service Identifier (PSI) as defined in Protocol Specification [OIPF_PROT2].

2) The HTTP or RTSP URL of the content to be streamed. See [Req. 5.7.1.f] of [CEA-2014-A] for details.

3) The URL of a Content Access Streaming Descriptor, in the manner as defined in Section 7.14.2. In this case the
application SHALL set the type attribute to “application/vnd.oipf.ContentAccessStreaming+xml”.

Example:

<object id=”d1” data=http://www.openiptv.org/fetch?contentID=25
type=”application/vnd.oipf.ContentAccessStreaming+xml” width=”200” height=”100”/>

In the first two cases, the application SHALL set the type attribute to the MIME type of the content referred to by the
value of the data attribute to provide a hint about the expected content type, in order for the browser to instantiate the
proper CEA-2014 A/V Control object.

In order to support method 3, an OITF SHALL support parsing and interpretation of the Content Access Streaming
Descriptor document format with the specified semantics, syntax and MIME type as specified in Annex E.2.

Support for Unicast streaming through the CEA-2014-A A/V Control object SHALL be indicated as defined in Section
9.3.11.

Page 30 (356)

 Copyright 2010 © Open IPTV Forum e.V.

For more details about setting up the A/V stream through a Content Access Streaming Descriptor, see Section 7.14.2,
Section 8 and Annex D.

4.7.2 Multicast streaming

If an OITF has indicated support for IPTV channels through a <video/broadcast> element with type ID_IPTV_* (as
defined in Section 7.13.12.1) the OITF SHALL support passing a content-access descriptor through the
‘contentAccessDescriptorURL’ argument of the ‘setChannel’-method of the video/broadcast object (as
defined in Section 7.13.1.3). If the content-access descriptor includes DRM information, the OITF SHALL pass this
information to the DRM agent.

4.8 Scheduled content
If an OITF has indicated support for playback and control of scheduled content, then it SHALL support the
video/broadcast embedded object defined in Section 7.13.1. In addition, it SHALL adhere to the requirements for
conveyance of the channel list as specified in 4.8.1. To protect against unauthorized access to the tuner functionality and
people’s personal favourite lists, the OITF SHALL adhere to the security model requirements as specified in Section
10.1, in particular the tuner related security requirements in Section 10.1.4.1.

NOTE: This section and Section 7.13 are focused on control and display of scheduled content received over local tuner
functionality available to an OITF. The term “tuner” is used here to identify a piece of functionality to enable switching
between different types of scheduled content services that are identified through logical channels. This includes IP
broadcast channels, as well as traditional broadcast channels received over a hybrid tuner.

NOTE 2: The APIs in this section allow for deployments whereby the channel line-up and favourite lists for broadcasted
content are managed by the client, the server, or a mixture thereof.

4.8.1 Conveyance of channel list information

To enable an application to control the tuner functionality on an OITF, the OITF needs to convey the channel list
information that is managed by native code on the OITF device to the application (either the channel list information is
provided locally on the OITF via Javascript, or the channel list is communicated directly to a server). This information
includes the list of uniquely identifiable channels that can be received by the physical tuner of a hybrid device, including
information about how the channels are ordered and whether or not these channels are part of zero or more favourite lists.
It also includes the channel line-up and the favourite lists that MAY be managed by an OITF for IP broadcast channels.

The API supports two methods of conveying the channel list information to an application:

1) Method 1: through Javascript, by using the method getChannelConfig(), as defined in Section 4.8.1.1.

2) Method 2: through an HTTP POST message that is sent upon the first connection to a service that requires tuner
control, as defined in Section 4.8.1.2.

An OITF SHALL support method 1, and SHOULD support method 2.

If an OITF conveys the channel list information using the HTTP POST message defined in method 2, then the server
SHALL, if it supports method 2, receive the conveyed channel list information and SHOULD rely on this information for
the purpose of exerting tuner control. If a service supports using the channel list information sent through the HTTP
POST method to exert tuner control , the server SHALL indicate this compatibility with method 2 using the postList
attribute specified in Section 9.3.1 (i.e., <video_broadcast postList=”true”>true</video_broadcast>),
in the server capability description.

If the server does not support method 2, the service SHALL rely on the getChannelConfig() method defined in
Section 7.13.1.3 to access the channel list information. If an OITF does not support method 2, the HTTP message of the
first connection to the service that requires tuner control SHALL be an HTTP GET message with an empty payload and
the service SHALL instead rely on the getChannelConfig() method defined in Section 7.13.1.3 to access the
channel list information. If support for method 2 is indicated by both the OITF and the server (through respective
capability exchanges), the OITF SHALL convey the channel list information using method 2.

If an OITF does not manage/maintain the channel line-up (i.e. does not have a locally stored channel line up), the
getChannelConfig() method described in Section 7.13.1.3 SHALL return null, and the HTTP message described
in Section 4.8.1.2 SHALL be an HTTP GET message with an empty payload. In that case, the application MAY use the

Page 31 (356)

 Copyright 2010 © Open IPTV Forum e.V.

createChannelObject() method as defined in Section 7.13.1.3 to create channel objects that can be used on
subsequent setChannel() requests, and in this way can manage/maintain its own channel list.

NOTE: conveyance of the channel list SHALL adhere to the security model requirements as specified in Sections
10.1.4.1 and 10.1.4.1.1.

4.8.1.1 Method 1: Javascript method “getChannelConf ig()”

The OITF SHALL support method getChannelConfig() as defined in Section 7.13.1.3 for the video/broadcast
embedded object. This method returns a ChannelConfig object as defined in Section 7.13.8.

4.8.1.2 Method 2: HTTP POST message

If an OITF supports sending the channel list through HTTP POST and a server has indicated that it uses the posted
channel list information to exert control of the tuner functionality of an OITF (i.e. using attribute postList=”true” in
the server capability description) for a particular service, then the OITF SHALL issue an HTTP POST if it decides to
connect to that service. The body of the HTTP POST request SHALL contain the Client Channel Listing, which SHALL
adhere to the semantics, syntax and XML Schema that are defined for the Client Channel Listing in Annex G. The
interaction SHALL be secured using Transport Layer Security (TLS). The server SHALL silently ignore unknown
elements and attributes that are part of the Client Channel Listing.

The server SHALL return a HTML document.

If the favourite lists are not (partially) managed by the OITF, the Client Channel Listing SHALL neither contain the
FavouriteLists nor the CurrentFavouriteList element.

4.8.2 Conveyance of channel list and list of schedu led recordings

This section and the following sections SHALL apply to OITFs that have indicated
<recording>true</recording> as defined in Section 9.3.3 in their capability profile.

To enable a service to schedule recordings of content that is to be broadcasted on specific channels, the OITF needs to
convey the channel list information that is managed by the native code on the OITF. This information typically includes
the channel line-up of the tuner of a hybrid device. The conveyance of channel list information and scheduled recordings
is based on the same two methods of conveying the channel list information to a service as defined in Section 4.8.1:

1) Method 1: through Javascript, by using the method getChannelConfig(). To this end, the OITF SHALL support
method getChannelConfig() as defined in Section 7.10.1.1 for the
application/oipfRecordingScheduler object.

2) Method 2: through an HTTP POST message as defined in Section 4.8.1.2 that is sent upon the first connection to a
service that has indicated that it requires control of the recording functionality and that has indicated compatibility
with method 2 using the postList attribute specified in Section 9.3.3 (i.e., <recording
postList=”true”>true</recording>), in the server capability description for a particular service.

An OITF SHALL support method 1, and SHOULD support method 2. If support for method 2 is indicated by both the
OITF and the server (through respective capability exchanges), the OITF SHALL convey the channel list information
using method 2. Otherwise, the HTTP message of the first connection to the service that requires tuner control SHALL
be an HTTP GET message with an empty payload.

If a server has indicated that it requires control of both the tuner functionality and the recording functionality available to
an OITF (i.e. by including both <video_broadcast> and <recording> with value true in the OITF’s capability
description), the body of the HTTP POST message SHALL contain a single instance of the Client Channel Listing
whereby the <Recordable> element defined in Annex G SHALL be used to indicate whether channels that can be
received by the tuner of the OITF can be recorded or not.

If an OITF does not manage the channel line-up, the getChannelConfig() method described in Section 7.10.1.1
SHALL return null, and the HTTP message described in Section 4.8.1.2 SHALL be an HTTP GET message with an
empty payload.

In addition, the OITF SHALL also support method getScheduledRecordings() as defined in Section 7.10.1.1.
This method returns a ScheduledRecordingCollection object, which is defined in Section 7.10.3.

Page 32 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Note that the conveyance of the channel listing and the scheduled recordings is subject to the security model
requirements specified in Section 10.1, and in particular the recording related security requirements in Section 10.1.4.2.

4.9 DLNA RUI Remote Control Function
This section describes the DLNA RUI RCF (Remote Control Function) and the interactions between the different entities
involved. It builds on the RUI feature defined by the DLNA Networked Device Interoperability Guidelines (August
2009) [DLNA] and shows how the DLNA RUI can be integrated into an OITF and used by DAE applications.

The DLNA RUI RCF is the feature that enables a Remote Control Device to be able to control the OITF or a DAE
application running on it, from that Remote Control Device. To support this feature, a Remote Control Device SHALL
support the DLNA RUIC function and an OITF SHALL support the DLNA RUIS function (as defined in Section 3.17).

The DLNA RUI RCF provides two main features:

• Providing a Control UI to the Remote Control Device.

o The Control UI is a CE-HTML document through which the user will control the OITF directly or a DAE
application on the OITF. There are two options based on the origin of the Control UI for sourcing it as follows:

� Sourcing the Control UI from the OITF itself.

� Sourcing the Control UI from an IPTV Applications server via the OITF.

• Interactions to exchange control messages and results

o The Control UI in the DLNA RUIC sends control messages to the OITF or DAE application and receives the
corresponding results.

The following sections will introduce the interfaces between the entities that support the DLNA RUI RCF.

4.9.1 Interfaces used by the DLNA RUI Remote Contro l Function

This section describes interfaces related to the DLNA RUI RCF. There are three entities (Remote Control Device, OITF
and IPTV Applications server) that communicate with each other through the interfaces described in Figure 4.

Page 33 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 4 - OIPF architecture with DLNA RUI RCF scenario

Figure 4 shows the entities in the OIPF Architecture involved in the DLNA RCF and the interfaces between them.

The dotted line “d)” between the RCF embedded object and the DLNA RUIS indicates that it is a local interface and
hence not defined by this specification. The detailed behaviour of each interface is defined as follows:

1) Interface a)

This interface is used to retrieve a Control UI from an IPTV Applications server by using XMLHttpRequest object
(the Control UI retrieved through interface a) will be delivered to DLNA RUIC via interfaces c), d) and e),
sequentially).

2) Interface b)

This interface is used by the DAE browser to retrieve a DAE application containing an RCF object when the DLNA
RUIC requests a DAE application to execute in the OITF.

3) Interface c)

The DLNA RUI RCF APIs use this interface to enable a DAE application to get the request originating from the
DLNA RUIC, through an event dispatched by the OITF, and send the corresponding response or any other
information to the DLNA RUIC via the DLNA RUIS.

4) Interface d)

This is a local interface that is used to pass messages between an RCF object in a DAE application and the DLNA
RUIS.

5) Interface e)

This is a DLNA RUI compatible interface which provides device discovery, sending/receiving HTTP messages and
notifications.

Page 34 (356)

 Copyright 2010 © Open IPTV Forum e.V.

When the DLNA RUIC is activated by a user, the DLNA RUIC searches for a DLNA RUIS and does a capability
exchange. Then, the DLNA RUIC retrieves the XML UI Listing from the DLNA RUIS and displays it to the user.
When the user chooses one of the Control UIs, the DLNA RUIC retrieves the selected Control UI from the DLNA
RUIS in the OITF.

The Control UI may send an HTTP request to deliver a message (for example, plays an AV content) and receive a
response from the DLNA RUIS.

This interface is also used for the DLNA RUIS to send a 3rd party notification defined in Section 5.6.1 of [CEA-
2014-A].

6) Interface f)

This interface is used by the selected Control UI (CE-HTML document) to retrieve resources (For example, images,
CE-HTML documents, or css or javascript files) directly from the IPTV Applications server.

4.10 Power Consumption
The power states described in this section relate to states exposed to the DAE application. There may be other states
supported by the OITF which are not described here.

The OITF will be in one of a number of power states. Its default state is “off” which consumes no power. The OITF
SHALL support an “on” state where it is running in normal operation. The OITF SHALL support at least one standby
state where nothing is being output to the display but power is consumed. There MAY be two types of standby states: an
“active standby” and a “passive standby” state. An OITF in the “passive standby” state has the smallest possible power
consumption (for example, average under 1W) which MAY be in line with European Commission Code of Conduct, US
Energy Star or other regional requirements. In this state the IR listener and wakeup clock MAY be active but no DAE
application is active. The IR listener allows the user to turn on the OITF using a remote control. A DAE application
MAY use the wakeup clock to schedule the OITF enter the “active standby” state, for example to perform a recording.

Note there may be different levels of “active standby” state but the assumption is that, at least, nothing is being output to
the display and one or more DAE applications may execute in the background.

The following explanation describes the behaviour of the OITF when transitioning between the mentioned states and how
a DAE application is affected.

A DAE application SHALL be able to execute in the “on” and “active standby” states but SHALL NOT be able to
execute in the “off” or “passive standby” states.

When an OITF is turned “on” from an “off” state a DAE application has to be explicitly selected by the user to be
executed or the OITF has identified a DAE application to be auto-started. A DAE application has no direct control if it
shall auto-start or not and this is left for the OITF to manage. A DAE application MAY auto-start if the Service
Discovery and Selection has taken place and the user has selected a service provider.

When an OITF changes to an “off” or “passive standby” state from an “on” or “active standby” state, the DAE
application SHALL get an ApplicationDestroyRequest event. The DAE application has an opportunity to take a
final action and gracefully quit or it shall be killed forcibly.

4.10.1 DAE application wake-up support

The OITF MAY support wake-up requests from a “passive standby”. There are two types of wake-up requests, one on an
individual DAE application and one on the OITF. The supported wakeup is indicated in the power consumption
capability information.

4.10.1.1 Single DAE application wakeup

The OITF MAY support wake-up requests for individual DAE applications when in “passive standby”. Similar to a
scheduled recording, a DAE application may need to execute at a predetermined time. At the wake-up point the DAE
application executes and when it completes its task returns to a “passive standby” state by exiting.

Page 35 (356)

 Copyright 2010 © Open IPTV Forum e.V.

There SHALL only be one wake-up request per DAE application. There MAY be multiple wake-up requests from
different DAE applications which SHALL execute independently. The OITF SHALL silently ignore all wake-up requests
whose timers expire when it is not in the “passive standby” state.

When the DAE application terminates and the OITF changes to an “active standby” or “on” state for other reasons than a
wake-up request the OITF SHALL NOT change power states.

Through capability information it is possible to determine if wake-up and standby modes are supported by OITF.

This is an example of how a DAE application may setup a wake-up request in OITF.

Precondition: The DAE application is actively running and the OITF is either in “on” or “active standby” states.

1) End user selects to go into “passive standby” natively.

2) An ApplicationDestroyRequest event is generated

3) The DAE application calls the prepareWakeupApplication() method and sets a token, time for wake-up and
URI associated with the DAE application. The DAE application then quits, e.g. by calling
destroyApplication() on its parent Application object..

4) The OITF goes into “passive standby” state.

5) When the wake-up time triggers, the OITF changes to “active standby” and the DAE application is initiated with the
URI specified in the prior call to prepareWakeupApplication().

6) The DAE application then runs clearWakeupToken() to get the token set in the prior call to
prepareWakeupApplication().

7) DAE applications executes.

8) Once the DAE application completes execution it shall exit. The OITF changes automatically to a “passive standby”
state.

If the OITF is turned “on” while in this mode the OITF SHALL NOT enter “passive standby” state.

4.10.1.2 OITF wakeup

The OITF MAY support wake-up requests for the OITF when in “passive standby”. The application when receiving an
event onApplicationRequest may request to wake-up the OITF at a set time using method pepareWakeupOITF().

OITF SHALL silently ignore all wake-up requests whose timers expire when it is not in the “passive standby” state.

4.10.2 OITF hibernate support

The OITF MAY support a hibernate mode which allows DAE applications and their state to be stored in memory when
in a “passive standby” state. The support of a hibernate mode greatly reduces the start-up time for DAE applications (for
example, start-up times of 3 seconds may be reached).

When the OITF resumes from the hibernate mode, it shall restore all of the previous DAE applications with their
previous state and SHOULD assign the same resources to the DAE applications as they had prior to the hibernate mode.
If this is not possible, the regular callback functions SHALL be used to inform the affected DAE application.

If hibernate mode is supported the event ApplicationHibernateRequest is generated instead of
ApplicationDestroyRequest when the OITF enters a “passive standby” state.

If the OITF supports hibernate mode only the OITF wake-up request is supported. The single DAE application wake-up
SHALL NOT be supported. The reason for this limitation is due to the difficulty to support both options.

A wake-up support SHALL NOT make the OITF resume from the hibernate mode. The wake-up support SHALL be
supported independently.

The OITF SHALL indicate support for hibernate mode through the capabilities information.

Page 36 (356)

 Copyright 2010 © Open IPTV Forum e.V.

4.10.3 State diagram for the power state

The following state machine provides an overview of the power state changes that may occur relating to power
consumption. The transitions in the state machine due to setPowerState() may be also be triggered by user
generated events handled natively by the OITF.

Figure 5 - State diagram of OITF power states

 Note1 – The transition from the OFF state to the PASSIVE_STANDBY or ON states is manufacturer dependent.

4.11 Display Model
Annex H describes the logical display model of an OITF and the relationship between DAE application graphics and
video.

Page 37 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5 DAE Application Model

5.1 Application lifecycle
This section describes the lifecycle of a DAE application, including when an application is launched, when it is
terminated and the behaviour when a DAE leaves the boundary of one application and enters another.

APIs related to DAE applications are described in Section 7.2.

5.1.1 Creating a new application

5.1.1.1 General

The present document defines a number of different application lifecycle models. These include;

• Applications started through an OITF-specific user interface

• Using the Application.createApplication() API call

• CE-HTML third party notifications

• Service-related applications (from SD&S signalling)

• Broadcast-related applications (either from SD&S signalling or from broadcast signalling in a hybrid device)

• Applications started by the DRM agent

• Applications provided by the AG through the remote UI

• Broadcast independent applications

• Widgets started through the Application class

All HTML, ECMAScript and SVG files that comprise an application SHALL be retrieved from sites within the current
application boundary of that application (see Section 5.1.3) . If the application attempts to access files of these types from
outside the application boundary, this access SHALL fail as if the content did not exist. Files with other MIME types
supported by OITF may be retrieved from outside the application boundary.

If the document of an application is modified (or even replaced entirely by other pages loaded from within the application
boundary), the Application object is retained. This means that the permission set granted when the application is
created applies to all “edits” of the document or other pages in the application, until the application is destroyed.

5.1.1.2 Applications started through an OITF-specif ic user interface

These SHALL be presented as broadcast-independent applications.

5.1.1.3 Using the Application.createApplication API call

Creating a new application is accomplished by creating a new Application object via the
Application.createApplication() method. Calling this method will create a new application and add it to the
application tree in the appropriate location.

// Assumes that the application/oipfApplicationManager object has the ID
// “applicationmanager”
Var appMgr = document.getElementById(“applicationmanager”);
var self = appMgr.getOwnerApplication(Window.document);

// create the application as a child of the current application
var child = self.createApplication(url_of_application, true);

The URL passed to the createApplication() method SHALL be one of the following;

Page 38 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• An HTTP or HTTPS URL referring to an XHTML page as defined by Section 6.1 of this specification.

• An HTTP or HTTPS URL referring to an XML AIT as defined by Section 5.2.8 of this specification.

• The DVB URI for launching service provider related applications signalled through SD&S as defined in Section 8.3
of this specification

• The DVB URI for launching broadcast-related applications from the current service signalled through SD&S as
defined in Section 8.3 of this specification. Where an OITF supports the MPEG-2 encoding of the AIT as defined in
Section 5.2.7.2, this form of the DVB URI SHALL also be supported for launching broadcast-related applications
from the current service when that service includes an MPEG-2 AIT.

5.1.1.4 CE-HTML third party notifications

The lifecycle of these is defined by [CEA-2014-A] and summarised in Section 5.3.1 of the present document.

5.1.1.5 Starting applications from SD&S Signalling

These are described in Section 5.2. All applications started by SD&S signalling are treated as siblings and are children of
the hidden system root node (see Section 4.3.3).

5.1.1.6 Applications started by the DRM agent

These SHALL be presented as broadcast-independent applications.

5.1.1.7 Applications provided by the AG through the remote UI

OITFs MAY include the capability to start these applications from an embedded application. OITFs SHALL include the
ability for applications to discover these as defined by the application/oipfGatewayInfo embedded object in
Section 7.7.1.

5.1.2 Stopping an application

The destroyApplication() method (as specified in Section 7.2.2.2) SHALL terminate the application. An
application may register a listener on the ApplicationDestroyRequest event in order to do some clean-up before
being destroyed completely. After the destroyApplication() method returns, further execution of the specified
application SHALL NOT occur.

When an application is terminated, all associated resources SHALL be freed (or marked available for garbage collection).
Any active network connections will be terminated. Any media content being presented by the application is stopped,
although recordings or content downloads initiated by the application will not be affected.

Note that terminating an application does not imply any effect on the state of the DAE execution environment.

Additional requirements are defined for stopping selected service provider applications and applications part of
scheduled content services in Sections 5.2.4.3 and 5.2.3.2 respectively.

5.1.3 Application Boundaries

All of the pages that make up an application are contained within its application boundary. This is the “fully qualified
domain name” (FQDN) of the initial page of the application in the absence of an application_boundary_descriptor.

If an applicationBoundary element is present in the SD&S signalling for an application as defined in [TS 102 809],
the application boundary SHALL also include the FQDNs listed in the applicationBoundary element. Note that this
element also defines the protocols over which these FQDNs may be accessed.

For files requested with XMLHttpRequest, the Same-Origin Policy SHALL be extended using the application domain;
i.e. any domain in the application domain SHALL be considered of same origin.

Extending the origin of XMLHttpRequest is potentially dangerous, and may lead to undesired leaking of private
information. To make sure that the integrity of the user is not compromised, the OITF SHOULD include a mechanism
which allows the user to exclude domains from application boundaries of applications.

Page 39 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.2 Application announcement & signalling

5.2.1 Introduction

This specification defines 3 basic types of application;

• Applications related to one or more broadcast TV or radio channels. These MAY run while one of the channels
which they are related to is being presented by the OITF. These are signalled through the SD&S broadcast or
package discovery records or included in an application discovery record which is referenced from the broadcast or
package discovery record.

• Applications related to the service provider selected through the service selection process. These MAY run at any
time until the service provider selection process is repeated and a different service provider selected. These are
signalled through the SD&S service provider discovery record or included in an application discovery record which
is referenced from the service provider discovery record.

• Applications independent of either of the above. These MAY run at any time. These are started by other applications
and are not signalled anywhere.

Each of these types is described in more detail below.

5.2.2 General

Section 4.3.3 of this specification describes how one application may start another application either as a sibling or as a
child. All applications started via SD&S signalling as described in this section SHALL be started as children of the
hidden system root node, as described in Section 5.1.1.5.

Any application may be signalled as AUTOSTART or PRESENT (see Table 3 below and Section 5.2.4.3 of [TS 102
809]). Applications signalled as AUTOSTART are intended to be automatically started by the OITF. Applications
signalled as PRESENT are intended to be started only by other applications. Broadcast related applications may
alternatively be signalled as KILL (see below) or PREFETCH.

It is up to the OITF manufacturer to ensure a good quality of experience concerning;

• Navigation within a DAE application.

• Accessing the available DAE applications, both available for launch, and those already running.

• Managing the life cycles of all DAE applications able to be used concurrently.

It is outside the scope of this specification whether there are dedicated keys on a remote control (e.g. the "menu", "home"
or "guide" key), there is an entry in an on-screen menu or there are some other mechanism.

It is OPTIONAL for the OITF to support an exit mechanism directly accessible by the end-user. If one is supported, it is
outside the scope of this specification whether this mechanism is a button on a remote control, an item in an on-screen
menu or something else. If such a mechanism is supported then it SHALL only stop the application the end-user is
currently interacting with and any children. The parent application and any siblings SHALL NOT be stopped.

Additionally any application MAY be stopped under the following circumstances;

• The application itself exits.

• The application's parent exits.

• It is stopped by the application which started it or another application which has a reference to it's application object.

• In response to changes in the application signalling as defined below for broadcast related applications and service
provider related applications.

In all these above cases except the first (when an application itself exits) when an application is stopped by the OITF, an
ApplicationDestroyRequest event (as defined in Section 7.2.6) SHALL be raised on the application. In the
following error conditions, an application being stopped SHOULD have an ApplicationDestroyRequest event
raised if this is possible.

Page 40 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• The OITF runs out of resources for applications and has to stop some of them in order to keep operating correctly.

• The OITF has determined that an application is non-responsive or has crashed.

5.2.3 Broadcast related applications

5.2.3.1 General

Providers of broadcast TV channels may signal broadcast related applications as part of the SD&S broadcast discovery
record (see Section 3.2.3 of [OIPF_META2], also Sections 4.2.1 and 5.4.3.2 of [TS 102 809]). As an optimisation,
broadcast related applications which are associated with a group of channels may be signalled as part of the SD&S
package discovery record (see Section 3.2.3 of [OIPF_META2], also Section 5.4.3.1 of [TS 102 809]). Broadcast related
applications may be included in the SD&S broadcast or package discovery records or included in an application
discovery record which is referenced from the broadcast discovery record.

Broadcast-related applications can also be signalled in-line in an MPEG-2 transport stream using the MPEG-2 encoding
of the AIT as defined in Section 5.2.7.2 below.

When a broadcast TV channel starts being presented, the OITF SHALL follow the “Procedure for Starting and Stopping
Broadcast Related Applications on Channel Change” defined below.

While a broadcast TV channel is being presented, the OITF SHALL monitor for changes in the SD&S information as
defined by Section 4.1.1.3 of [OIPF_META2]

When changes are detected, the OITF SHALL follow the “Procedure for Starting and Stopping Broadcast Related
Applications When Signalling is Updated” defined below.

NOTE: The typical “red button” behaviour can be achieved by having the first page of an AUTOSTART broadcast
related application be full screen and transparent to video except for an image showing a red button. Only when the user
generates a “red” key event does the application display more of its user interface.

OITFs MAY include the capability to start and stop a broadcast-related DAE application instead of analogue teletext
services as part of a scheduled content service or channel. Typically this would re-purpose the same mechanism used to
start an analogue teletext service – for example a “text” button on a remote control. These are identified using the
application usage mechanism defined in [TS 102 809] and Section 5.2.7 below.

5.2.3.2 Stopping

In addition to what is stated in 5.2.2, broadcast related applications are stopped when

• Changing between channels as defined in the “Procedure for Starting and Stopping Broadcast Related Applications
on Channel Change” below.

• The OITF detects an update to the signalling for a currently presented channel as defined in “Procedure for Starting
and Stopping Broadcast Related Applications When Signalling is Updated” below.

• The OITF stops presenting any broadcast channel.

5.2.3.3 Procedure for starting and stopping broadca st related applications on
channel change

When a scheduled content service is selected, the following SHALL apply;

• The OITF shall determine if there are any applications signalled as part of the service as defined by Sections 3.2.3.1
and 3.2.3.2 of [OIPF_META2].

• Applications which are related to that scheduled content service and which are signalled with a control code of
AUTOSTART SHALL be started if not still running from any previously presented linear TV service. They SHALL
be started commencing with the highest priority application working downwards in priority while resources in the
OITF permit.

• Applications which are related to that scheduled content service, which are signalled with a control code of
AUTOSTART and which are already running from a previously presented scheduled content service SHALL

Page 41 (356)

 Copyright 2010 © Open IPTV Forum e.V.

a) continue to run uninterrupted if the serviceBound element of the ApplicationDescriptor in their
signalling has value false.

b) be stopped and re-started if the serviceBound element of the ApplicationDescriptor in their signalling
has value true.

• Applications which are related to that scheduled content service and which are signalled with a control code of
PRESENT SHALL continue to run if already running but SHALL NOT be started if not already running.

• Running applications from any previously presented scheduled content service which are not part of the new
scheduled content service SHALL be stopped as part of the change of presented service.

The following flowchart shows the behaviour that SHALL apply when the selected channel changes:

Page 42 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Yes

Yes

No

Yes

No

Yes

Yes

No

No

Is it signalled with the control
code KILL?

Is it signalled in the new

service as AUTOSTART?

Was it signalled as service-
bound on the previous

service?

Is an application already
running?

Is an application signalled as

AUTOSTART?

Kill the application

Find the next running

application

Kill the currently running

application and restart it

New

service
selected

Done

Is it signalled in the new

service?

Yes

Yes

Does the terminal have

an operational broadband
connection?

Which is the highest priority

transport?

Is the application signalled
as being available via

broadcast?

Find the highest priority

application

Load the application

from the broadcast or

multicast protocol and
start it

Yes

Find the application with

the next highest priority

Load the application
using HTTP and start it

HTTP

Broadcast

Did the application load

successfully?
No

Yes

Load the application

from the broadcast
protocol and start it

Discard any apps signalled

as broadband-only and
discard broadband-specific

signalling for apps

signalled as both
broadband and broadcast

No

Yes

Are other broadcast-related

applications running?

Yes

Find the first running
application

No

No

Are other autostart

applications signalled?

No

No

Is more than one simultaneous

application supported, or are
no applications currently

running?

No

No

Is more than one simultaneous

application supported, or are

no applications currently
running?

Yes

No

Did loading fail due to a
network error?

Yes

No

Figure 6: Behaviour when the selected channel changes

5.2.3.4 Procedure for starting and stopping broadc ast related applications when
signalling is updated

When the application signalling for a scheduled content service is updated, the following apply;

Page 43 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Applications which are added to the service with a control code of AUTOSTART SHALL be automatically started
when their addition is detected by the OITF. They SHALL be started commencing with the highest priority
application working downwards in priority while resources in the OITF permit. Applications added to the service
with any other control code SHALL NOT be automatically started.

• Applications which are part of the service whose control code changes to AUTOSTART from some other value
SHALL be automatically started unless already running.

• An application which is removed from the service or whose control code changes to KILL SHALL be stopped.

• If application signalling is removed from a service, all running broadcast-related applications SHALL be stopped
(i.e. the same behaviour as signalling an empty AIT).

The following flowchart shows the behaviour that SHALL apply when the application signalling for the currently
selected service changes, or when a running broadcast-related application exits:

Page 44 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 7: Behaviour when the application signalling for the currently selected channel changes or when a running
broadcast-related application exits

Page 45 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.2.4 Service provider related applications

5.2.4.1 Signalling

Service providers may signal service provider related applications as part of their SD&S service provider discovery
record (see Section 3.2.3 of [OIPF_META2], also Sections 4.2.3 and 5.4.3.3 of [TS 102 809] where they are referred to
as “unbound applications”). Service provider related applications may either be directly included in the SD&S service
provider discovery record or included in an application discovery record which is referenced from the service provider
discovery record.

Service providers MAY label one of the applications in their SD&S service provider discovery record using the
application usage values defined in Section 3.2.3.3.3 of [OIPF_META2] as follows;

• A service discovery application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:servicediscovery”. An application labelled in this way SHOULD be the
highest priority AUTOSTART application signalled.

• An EPG application using the ApplicationUsage identifier “urn:oipf:cs:ApplicationUsageCS:2009:epg”.

• A VoD application using the ApplicationUsage identifier “urn:oipf:cs:ApplicationUsageCS:2009:vod”.

• A communication service application using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:communication”.

• An application implementing non-native HNI-IGI using the ApplicationUsage identifier
“urn:oipf:cs:ApplicationUsageCS:2009:hni-igi”.

5.2.4.2 Starting

Service provider related applications are started under the following circumstances;

• When a service provider is selected, the OITF SHALL start the AUTOSTART applications signalled by that service
provider starting with the highest priority one working downwards in priority while resources in the OITF permit.

• By the end-user using a mechanism provided by the OITF.

• By other service provider related applications.

The OITF SHALL include a mechanism to show the service discovery application and MAY include mechanisms to
show the EPG, VoD and the communication service applications. These mechanisms;

• SHALL load the application into the browser if not already loaded.

• SHALL show this application to the end-user.

• SHALL work at all times when the currently selected service provider has an application labelled in this way.

It is outside the scope of this specification whether these mechanisms are buttons on a remote control, items in an on-
screen menu or something else. If a button is used, this mechanism SHALL work regardless of which application has
focus and the key event corresponding to the button used SHALL NOT be delivered to DAE applications.

5.2.4.3 Stopping

In addition to what is stated in 5.2.2, service provider related applications are stopped when

• The service provider selection process is re-run and a different service provider is selected.

• The selected service provider updates the list of applications in their SD&S service provider discovery record, an
application is removed and the OITF detects this update (see Section 4.1.1.3 of [OIPF_META2]).

5.2.5 Broadcast independent applications

Applications which are independent of both broadcasters and the currently selected service provider are started and
stopped as described in Section 5.2.2 above. They do not require any signalling. If they are signalled then this shall be

Page 46 (356)

 Copyright 2010 © Open IPTV Forum e.V.

done using the XML encoding of the AIT as defined in Section 5.4 of [TS 102 809]. The XML file shall contain an
application discovery record containing exactly one application. The XML file shall be delivered with HTTP or HTTPS
using the “application/vnd.dvb.ait+xml” MIME type as defined in Section 5.4 of [TS 102 809].

 |

5.2.6 Switching between applications

Two cases of switching between applications are relevant in this specification;

• Switching between visible applications and invisible ones.

NOTE: Switching between a visible application and an invisible one is conceptually a little like changing between
tabs in a PC browser however without any implication of a particular user interface.

• Switching between simultaneously visible applications where this OPTIONAL feature is supported.

A number of possible mechanisms exist for switching between visible applications and invisible ones. Some examples
include the following;

• Hard coded mechanisms in the terminal for switching to a specific application (e.g. to the service discovery
application, the content guide, the communication service application).

• An OPTIONAL terminal specific UI showing available DAE applications which the user can switch to.

5.2.7 Signalling format

5.2.7.1 XML Encoding

The following table defines how the signalling defined in [TS 102 809] SHALL be interpreted when used to signal DAE
applications.

Table 2: Application signalling

Descriptor or Element Summary Status in this specif ication

5.4.4.1 ApplicationList List of
applications

Required

5.4.4.2 Application Name, identifier,
type specific
descriptor

Required

5.4.4.3 ApplicationIdentifier 2 numbers Required

5.4.4.4 ApplicationDescriptor Numerous
application
attributes

Required

The serviceBound element is only
applicable to broadcast related
applications and SHALL be ignored for
other applications.

Page 47 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Descriptor or Element Summary Status in this specif ication

5.4.4.5 VisibilityDescriptor Attribute –
indicate if
application can
be visible to
users and/or
other
applications

Optional. If this element is not present,
OITFs SHALL use a default value of
VISIBLE_ALL.

5.4.4.6 IconDescriptor Icon for
application

The filename in the IconDescriptor
SHALL be an HTTP URL. Use of the
icon signaled here by the OITF is
OPTIONAL.

5.4.4.7 AspectRatio Preferred aspect
ratio for icons

Only relevant if the OITF uses the
IconDescriptor.

5.4.4.8 MhpVersion Specification
version

As defined in Section 3.2.3.3.2 of
[OIPF_META2].

5.4.4.9 StorageCapabilities Can the
application be
stored or cached

Ignored

5.4.4.10 StorageType Enumeration
used in 5.4.4.9

As 5.4.4.9

5.4.4.11 ApplicationType Application type For DAE and PAE applications, the
appropriate value from the
ApplicationTypeCS scheme from
[OIPF_META2] SHALL be used.

5.4.4.12 DvbApplicationType Enumeration for
5.4.4.11

Ignored

5.4.4.13 ApplicationControlCode Enumeration for
5.4.4.4.

See below

5.4.4.14 ApplicationSpecificDescriptor Container Ignored

5.4.4.15 AbstractIPService Supports
grouping of
unbound
applications

Only one group SHALL be signalled

5.4.4.16 ApplicationOfferingType Used as part of
application
discovery record

Required

Page 48 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Descriptor or Element Summary Status in this specif ication

5.4.4.17 ServiceDiscovery Used as part of
application
discovery record

Required

5.4.4.18 ApplicationUsageDescriptor Indicates that an
application
provides a
specific service

Required

5.4.4.19
TransportProtocolDescriptorType

Abstract base
type

Required

5.4.4.20 HTTPTransportType Type for
applications
accessed by
HTTP

Required

5.4.4.21 OCTransportType Type for
applications
accessed by
DSM-CC object
carousel

Ignored

5.4.4.22 ComponentTagType Encodes a DVB
component tag

Ignored

5.4.4.23
SimpleApplicationLocationDescriptorT
ype

Encodes the
location of the
start page of an
application
relative to one of
the transport
types.

Required

5.4.4.24
SimpleApplicationBoundaryDescriptor
Type

Encodes an
application
boundary.

Required

FLUTESessionDescriptor as defined
by Section B.13 of [OIPF_META2]

Support for
distributing
applications
through
multicast.

SHALL be supported if OITFs support
FLUTE.

Elements and descriptors marked as ‘Ignored’ SHALL NOT be processed for DAE applications. Servers MAY include
these in application signalling.

The application control code SHALL be interpreted as follows for DAE applications:

Page 49 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Value Description

AUTOSTART The application is eligible to be started automatically. Sections 5.2.3.2 and
5.2.4.1 above define the order in which AUTOSTART applications are started if
more than one is signalled.

PRESENT The OITF SHALL take no action. The OITF MAY provide a mechanism to
allow the end-user to start applications signalled as PRESENT. However since
there is no requirement for such a mechanism, an IPTV service provider who
signals applications with this control code SHALL provide an application able
to start them.

KILL The application SHALL be terminated (see ApplicationDestroyRequest
in Section 7.2.6).

PREFETCH The OITF MAY start fetching files, data or other information needed to start
the application but SHALL NOT start the application. Implementations MAY
consider this control code to be the same as PRESENT.

Table 3: DAE application control codes

The other control codes from [TS 102 809] are not defined for DAE applications. Other control codes are not required to
be supported but MAY be supported if required by another specification. The OITF SHALL discard any AIT entry
containing an unsupported control code.

5.2.7.2 MPEG-2 Encoding

In a hybrid device where the broadcast channel is based on DVB network technologies and uses DVB-SI as specified in
[EN300468], the OITF SHALL support the MPEG-2 encoding of the AIT from [TS 102 809] as defined in the following
table. This encoding MAY be supported in other devices.

Section Status Notes

5.2.2 Application types M The application type shall be 0x0011.-

5.2.3 Application identification M Applications which only need the default
permissions SHALL be signalled using
application_ids from the range for
unsigned applications.

Applications which need more
permissions than the default SHALL be
signalled using application_ids from the
range for signed applications.

The range of application_ids for privileged
applications SHALL NOT be used.-

5.2.4 Application control codes M The following control codes shall be
supported:

0x01 AUTOSTART

0x02 PRESENT

0x04 KILL

0x07 DISABLED

Page 50 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The application life cycle shall follow the
rules defined in TS 102 809 [TS 102 809]
and in this specification.-

5.2.5 Platform profiles M The encoding of the
application_profile is not defined in
this specification.

The version fields shall be set as follows:

version.major = 2

version.minor = 1

version.macro = 0

5.2.6 Application visibility M

5.2.7 Application priority M

5.2.8 Application icons O The icon locator information shall be
relative to the base part (constructed from
the URL_base_bytes) of the URL as
signalled in the
transport_protocol_descriptor.

5.2.9 Graphics constraints -

5.2.10 Application usage M Usage type 0x01 shall be supported as
described in Section 5.2.3.1 of the present
document.-

5.2.11 Stored applications -

5.2.12 Application Description File -

5.3.2 Program specific information M

5.3.4 Application Information Table M See [AVC] for MPEG-2 system related
requirements and constraints.

5.3.5.1 Application signalling
descriptor

M

5.3.5.2 Data broadcast id descriptor O The value to be used for the
data_broadcast_id field of the
data_broadcast_id_descriptor for OIPF
carousels shall be 0x0150.

By supporting this optional feature,
terminals can reduce the time needed to
mount a carousel.

5.3.5.3 Application descriptor M

5.3.5.4 Application recording
descriptor

-

Page 51 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.3.5.5 Application usage descriptor M Usage type 0x01 shall be supported as
described in Section 5.2.3.1.-

5.3.5.6 User information descriptors M

5.3.5.7 External application
authorization descriptor

M

5.3.5.8 Graphics constraints
descriptor

-

5.3.6 Transport protocol descriptors M The following protocol_ids shall be
supported:

0x0001 object carousel over broadcast
channel (as defined in [AVC])

0x0003 HTTP over broadband
connection

5.3.7 Simple application location
descriptor

M

5.3.8 Simple application boundary
descriptor

M Only strict prefixes starting with "dvb://",
"http://" or "https://" shall be supported.

Only prefixes forming at least a second-
level domain shall be supported.

Path elements shall be ignored.

5.3.9 Service information -

5.3.10 Stored applications -

Table 4: Supported application signalling features

Status Description

M MANDATORY

The signalling may be restricted to a subset specified in the "Notes" column. In that case
all additional signalling is optional.

O OPTIONAL

- NOT INCLUDED

The referenced signalling is not included in this specification.

Table 5: Key to status column

Page 52 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.2.8 Widgets lifecycle

As Widgets are packaged as ZIP archives, they only require a single download and installation on an OITF before being
executed. Widgets can also be downloaded over non-HTTP distribution channels and even over off-network channels
(USB drives, CD/DVD, etc.).

The Widget lifecycle has 3 main steps:

1) Installation: The Widget is installed on the OITF

2) Execution: The Widget is executed (end eventually stopped)

3) Removal: The Widget is uninstalled from the OITF

Step 1, installation, is only needed before the first execution of the Widget or if its version is obsolete and the user or the
OITF want to update it (see Section 5.2.8.4).

Step 2, execution, may be performed at any time after the Widget has been installed. It can be triggered by an action from
the user, or it may be done automatically by the OITF either through a DAE application or a native application in the
OITF. Note that it is not possible to have two running instances of a single Widget simultaneously.

Step 3, removal, is performed if the user wants to uninstall the Widget from the OITF. An uninstalled Widget needs to be
reinstalled by a user to be executed again.

Detail descriptions of each step above are provided in the following sections.

5.2.8.1 Widget installation

In order to be able to execute a Widget, we first have to acquire a Widget package and install it on the OITF. Steps for
acquiring and processing a Widget package and associated processing rules are described in Section 9 of [Widgets-
Packaging]. In this specification the expression “Widget installation succeed” means that the afore-mentioned procedure
is completed successfully.

Although [Widgets-Packaging] does not limit or mandate any specific data transfer protocol or distribution channel
through which Widgets are delivered, an OITF SHALL support the use of HTTP and HTTPS as the transfer protocols.
Support for other transfer protocols is OPTIONAL. Widget installation is done through the
ApplicationManager.installWidget() API call. After a call to this function, if the installation succeeds, the
installed Widget SHALL be available in the list of installed Widgets that can be retrieved using
ApplicationManager.widgets. The application installing the Widget is notified about the installation
success/failure through the “WidgetInstallation” event as specified in Section 7.2.1.2 and 7.2.1.4.

When installing a Widget, the OITF SHOULD notify the user if there is already an installed Widget with the same “id”
value (where “id” is defined in Section 7.6.1 of [Widgets-Packaging] along with the extension defined in Section 11.1 of
this specification). In this case the OITF SHALL proceed as specified in the description of installWidget() method
in Section 7.2.1.3.

5.2.8.2 Widget execution

In order to be executed, a Widget needs to be installed as described in the previous section. After the installation, a
Widget can be started either using the Application.createApplication() API call or through the
ApplicationManager.startWidget() API call. The behaviour of these two methods is equivalent.
startWidget() is the preferred method; createApplication() is kept for consistency with other DAE
applications. A list of installed Widgets can be retrieved using ApplicationManager.widgets. Note that only one
running instance per Widget at time is allowed. A Widget can be stopped using Application.stopWidget() or
Application.destroyApplication(). stopWidget() is the preferred method; destroyApplication() is
kept for consistency with other DAE applications.

If the installed Widget has been run on the OITF before, any “storage areas” associated with the Widget, as defined in
[Widgets-APIs], SHALL be restored. Saved data is accessible through the preferences attribute of the Widget object as
defined in Section 11.3 of this specification.

See related sections in Section 7 for more details about the above mentioned API calls.

Page 53 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.2.8.3 Uninstalling a Widget

An installed Widget can be uninstalled from an OITF through the ApplicationManager.uninstallWidget()
API call. Calling this method on a running Widget will cause the Widget to be stopped before the Widget is uninstalled.
The application uninstalling the Widget is notified about the uninstallation success/failure through the
“WidgetUninstallation” event as specified in Section 7.2.1.2 and 7.2.1.4. Any storage areas associated with the
uninstalled Widget SHALL be deleted.

5.2.8.4 Widget updates

An installed Widget can be updated by installing a new version of it.

5.3 Event Notifications
This section describes 4 different notification frameworks (In-session notification based on the home network domain,
In-session notification based on the Internet domain, 3rd Party notification based on home network domain, and 3rd Party
notification based on the Internet domain) defined by [CEA-2014-A]. Moreover, it defines a new notification framework
for IMS based notifications such as CallerID, Incoming Call Message, Chat Invite not only when a DAE application is
active but also inactive.

The event notification mechanism allows OITFs to receive important UI updates or information from IPTV service
provider or home network devices such as IG, AG or DLNA RUI compatible devices. CEA 2014 mandates 4 unique
notification models which are dependent on whether the server exists on the internet domain or home network domain.
Each of these domain models have two unique scenarios depending on whether or not a DAE application is running. If a
DAE application is active, the in-session notifications are used to support dynamic UI interaction between the server and
the DAE application without the need to reload the XHTML page. Otherwise, 3rd party event notifications should be used
to receive and display a notification message outside of the current user session with a DAE application on the OITF, for
example an event coming from another server, e.g. to receive emergency alerts, or events regarding news, weather, stock
or other information. Generally, 3rd party event notification creates a new DAE application to display notification
information.

IMS event notifications for Caller ID, Messaging and Chatting have different behavior from general event notification
defined by [CEA-2014-A] because IMS communication service should be accessed by authorized users and devices
within the approval of IPTV service provider. Considering the issue of user’s privacy, the DAE specification not only
adopts the general Event Notification Frameworks from [CEA-2014-A] as defined in Section 5.3.1, but also defines a
new IMS Event Notification Framework in Section 5.3.2.

5.3.1 Event notification framework based on CEA 201 4

An OITF must be capable of displaying various event notifications from both Internet domain and home network domain.
Event notification can be conveyed through active UI interaction’s channel or out of session. As described in the diagram
below, in-session notification is associated with a running DAE application, whereas a 3rd party event notification is
delivered through an independent communication channel. If an OITF receives a 3rd party event after subscribing to a
certain internet url or the OITF receives a multicasted event notification message, the OITF needs to perform 3rd party
event notification and display its information inside a new DAE application.

The diagram below describes a general overview of the Event Notification architecture.

Page 54 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 8: General Event Notification Architecture on OITF and Remote UI Server

In-Session notifications are performed to update partial or whole DAE application UI through the NotifSocket object
and/or the XMLHttpRequest object as defined by [CEA-2014-A]. NotifSocket object creates a persistent TCP
connection between a DAE application and Remote UI server in order to support burst event notifications. In addition, a
DAE application can create an XMLHttpRequest object to make asynchronous HTTP requests to a web server on the
internet domain. This establishes an independent HTTP connection channel to support XML updates between the DAE
application and the Remote UI server.

On the other hand, if the OITF receives an incoming notification outside of an active interaction (i.e. session) with the
server, a 3rd Party Event Notification must be executed to invoke a DAE application to fetch and render the UI content
using the url contained within the notification message. This allows servers to “broadcast” important messages, such as
Emergency alert messages, to an OITF at anytime, even when the DAE application would currently not be running. This
should be done through a push-method with multicast message for the home network domain. and a pull-method for the
internet case.

The next two subsections describe the requirements for the event mechanisms in more detail.

5.3.1.1 In-session event notification

In-Session notification can be defined as “Dynamic UI Update.” With this mechanism, a server should be able to send a
notification message during a UI interaction to update the UI dynamically without the need to reload the XHTML-page.
The OITF SHALL support the two following scripting objects for In-session event notification:

• XMLHttpRequest Scripting Object (as defined in Section 5.5.2 of [CEA-2014-A])

o The XMLHttpRequest is an embedded object on the browser and enables scripts to make HTTP request to a
web server without the need to reload the page. It can be used by ECMAScript to transfer and manipulate XML
data to and from a web server using HTTP, establishing an independent connection channel between a web
server and DAE applications. Whenever a DAE application needs to update the UI, it sends a request to the UI
server, IPTV service provider or 3rd Party Internet Server, to monitor the change of status or event. In case an
event, the UI server sends an HTTP response to the XMLHttpRequest.

• NotifSocket Scripting Object (as defined in Section 5.5.1 of [CEA-2014-A])

o Even though XMLHttpRequest object has become more widespread on browsers and Internet Portal servers, it
has a difficulty in supporting dynamic UI update on home domain’s devices because it is required to be invoked
by the request of XMLHttpRequest on DAE application side. NotifSocket creates a persistent TCP
connection between DAE application and UI server in order to support burst event notifications. Whenever the
UI server needs to notify the DAE application running on the OITF of a UI update, it sends any types of update
message, such as encoded binary or string, through the NotifSocket connection. The NotifSocket object
allows an UI server to push any event information through the independent TCP/IP channel at any time.

Page 55 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5.3.1.2 Out of session event notification

Out of session event notifications are defined as “3rd Party Notifications” in CEA 2014. Since these notifications are not
part of an active remote UI interaction with a Remote UI Server, the OITF must launch a new DAE application to render
the UI content using the url contained within the notification message.

The OITF SHALL support multicast notifications for 3rd party event notifications for the home network domain and the
internet domain respectively as defined below. Support for polling-based notifications as defined below is OPTIONAL
and support can be indicated through the OITF’s capability description by using element <pollingNotifications> as
defined in Section 9.3.14 or the +POLLNOTIF name fragment as defined in Section 9.2.

• Multicast Notifications (as defined in Section 5.6.1 of [CEA-2014-A])

o The OITF SHALL support receiving of Multicast Notifications over multicast UDP, with a UPnP event message
format defined by CEA 2014 if the incoming message comes from home network domain. After interpreting the
message, the OITF should create a new notification window with specified <ruiEventURL>. In order to
ensure a reliable transmission of a multicast notification message, a Remote UI Server shall transmit the same
notification message, with the same HTTP SEQ header value 2 or 3 times, where the time between transmissions
should be a random time between 0 and 10 seconds.

• Polling-based Notification (as defined in Section 5.6.2 of [CEA-2014-A])

o The OITF SHALL support polling-based 3rd Party notifications from an IPTV Service Provider or a 3rd Party
Internet Server. To this end, the OITF subscribes to certain URIs to display web contents such as news, weather,
stock or other information from Internet side on executing the subscribeToNotifications() method. An
OITF should poll for notifications even when the CE-HTML browser is not active. If a new notification is
received, this MAY be notified to the user in a vendor defined way, including direct rendering on the display and
using a non-intrusive prompt.

Note that in Annex B we have defined a subscribeToNotificationsASync() method to provide a way
of subscribing to polling-based notifications that is non-blocking.

5.3.2 IMS event notification framework

This section covers the DAE interactions needed to drive the message exchanges on the HNI-IGI interface in the case
where the Service Provider offers an IMS application.

The HNI-IGI framework defines how an OITF interacts with an IMS Gateway (IG) via the HNI-IGI interface
([OIPF_PROT2] Section 5.5.1).

Every message on the HNI-IGI interface SHALL be carried in a HTTP transaction where the OITF sends the HTTP
request and the IG responds to the request. The HNI-IGI In-session framework, in the case of a DAE application, uses the
XMLHttpRequest Script Object, as defined in Section 5.5.2 of [CEA-2014-A] .

There are two message directions on the HNI-IGI interface, corresponding to outgoing and incoming messages from and
to the OITF.

5.3.2.1 HNI-IGI transactions for in-session out-goi ng request messages

This message direction applies to outgoing messages from the OITF on the HNI-IGI interface. The OITF sends a request
and the IG responds to the request. The following figure illustrates the sequences for in-session transactions for outgoing
requests from DAE application to the IG.

Page 56 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 9: HNI-IGI transaction for outgoing SIP requests from a DAE application

1. Prepare the Call-ID for a SIP request. The Call-ID SHALL be generated by the DAE application for an outgoing SIP
request. This Call-ID SHALL be locally unique across all OITFs in a residential network.
NOTE: How uniqueness is achieved is currently not defined.

2. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

3. The DAE application SHALL invoke the open() method to specify the HTTP method and Request-URI for the
request. In this case, the HTTP POST method with the Request-URI of <IG_URL>/SIP SHALL be used as
specified in [OIPF_PROT2].

4. The DAE application SHALL invoke the setRequestHeader() method to specify the required HTTP headers as
specified in [OIPF_PROT2]. This method SHALL be invoked for each required HTTP header. For example, the X-
OITF-Request-Line HTTP header specifies the SIP request line for the SIP request. The Call-ID is specified in the
X-OITF-Call-ID header.

5. The DAE application SHALL invoke the send() method to send the HTTP request. The SIP Message Request
body is specified in a parameter of this method.

6. When the HTTP response is received, the onreadystatechange callback function SHALL be invoked on the
DAE application.

7. The DAE application SHALL invoke the getRequestHeader() method to retrieve each HTTP header. The SIP
Response Line is specified in the X-OITF-Response-Line header.

OITF

DAE

Application
IG

ASM

1. Prepare Call-ID
for the SIP dialog

Outgoing SIP Request from OITF to IG

[S1] SIP request
<SIP Request Line>
<SIP Headers>
<RequestMsgBody>

XMLHttpRequest
Script Object

2. new XmlHttpRequest()

3. open(POST,
“<IG_URL>/SIP”)

4. setRequestHeader(“X-OITF-
Request-Line”, ReqLine)

5. send (RequestMsgBody)

[H1]. HTTP request
POST <IG_URL>/SIP /HTTP 1.1
X-OITF-Request-Line: <ReqLine >
HTTP Body: <RequestMsgBody>

[S2]. SIP response
<SIP Response Line>
<SIP Headers>
<ResponseMsgBody>

[H2]. HTTP response
200 OK
X-OITF-Response-Line: <RespLine >
HTTP Body: <ResponseMsgBody>

6. onreadystateshange
callback

8. read
ResponseMsgBody
via responseXML or
responseText

Next out-going SIP requests with the same call-ID may follow as the same sequence from step 1) to step 6.)

7. getResponseHeader(“X-OITF-
Response-Line”)

Page 57 (356)

 Copyright 2010 © Open IPTV Forum e.V.

8. If the readyState property of the XMLHttpRequest object has the value 4, the HTTP response body SHALL be
retrieved via the responseXML or responseText properties of the XMLHttpRequest object. The SIP response
body is specified in the HTTP response body.

5.3.2.2 HNI-IGI transaction for in-session incoming request messages

This message direction applies to incoming messages to the OITF on the HNI-IGI interface which are related to an
existing IMS session. An example of this is a SIP NOTIFY message received from the network in response to a previous
SIP SUBSCRIBE sent from the IG. The OITF sends a HTTP request and the IG responds to the request when it receives
an incoming message from the network related to an existing session. The following figure illustrates the sequences for
in-session transactions for incoming requests from the IG to the DAE application.

Page 58 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 10: HNI-IGI transaction for in-session incoming SIP request

1. Prepare the Call-ID for this SIP session for which a message is expected. The Call ID SHALL be the same as the one
created initially for this session.

OITF

DAE

Application
IG

ASM

1. Prepare Contact
and Call-ID for the
SIP dialog

In-session incoming SIP request

XMLHttpRequest
Script Object

2. new XMLHttpRequest()

3. open(POST,
“<IG_URL>/PENDING_IG”)

4. setRequestHeader(X-OITF-
Request-Line, null)

5. send (null)

[H1]. HTTP request
POST <IG_URL>/PENDING_IG
/HTTP 1.1
X-OITF-Request-Line: null
HTTP Body: <RequestMsgBody>: null

[S2]. SIP response
<SIP Response Line>
<SIP Headers>
<ResponseMsgBody>

[H2]. HTTP response
200 OK
X-OITF-Request-Line: <ReqLine >
HTTP Body: <RequestMsgBody>

6. onreadystatechange
callback

8. read ResponseMsgBody via
responseXML or responseText

If further in-session incoming SIP request are expected for this call-ID, the same sequence from step 4) to step 11) SHOULD be
followed. This SHALL be done immediately and not wait for a body to be included. In case the DAE application does not need to
receive any further incoming in-session SIP requests, the [H3] HTTP POST in step 11 SHOULD be directed to <IG_URL>/SIP.

7. getResponseHeader(“X-OITF-
Request-Line”)

[S1] SIP request
<SIP Request Line>
<SIP Headers>
<RequestMsgBody>

* HTTP response is pending
until SIP request or time-out

9. new XMLHttpRequest()

10. open(POST,
“<IG_URL>/PENDING_IG”)

11. setRequestHeader(“X-OITF-
Response-Line”, RespLine)

12. send (ResponseMsgBody)

[H3]. HTTP request
POST <IG_URL>/PENDING_IG
/HTTP 1.1
X-OITF-Response-Line: <RespLine>
HTTP Body: <ResponseMsgBody>

* HTTP response is pending
until SIP request or time-out

Page 59 (356)

 Copyright 2010 © Open IPTV Forum e.V.

2. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

3. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI for the
request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be used as
specified in [OIPF_PROT2].

4. The DAE application SHALL invoke the setRequestHeader() method to specify the required HTTP headers, as
specified in [OIPF_PROT2]. This method is invoked for each HTTP header that is required. In this case, the
X-OITF-Request-Line, which specifies the SIP request line for the SIP request, is set to the value null. The SIP
Call-ID is specified in the X-OITF-Call-ID header.

5. The DAE application SHALL invoke the send() method to send the HTTP request. For the HTTP request that sets
up the initial long poll, no X-OITF headers are allowed for the HTTP request to the PENDING_IG Request-URI.

6. When the HTTP response is received, the specified onreadystatechange() callback function is invoked.

7. The DAE application SHALL invoke the getResponseHeader() method to retrieve each HTTP header. The SIP
Request Line is specified in the X-OITF-Request-Line HTTP header.

8. If the readyState property of the XMLHttpRequest object has the value 4, the HTTP response body SHALL be
retrieved via the responseXML or responseText properties of the XMLHttpRequest object. The SIP response
body is specified in the HTTP response body.

9. The DAE application SHALL create a new XMLHttpRequest object using the constructor “new
XMLHttpRequest()”.

10. The DAE application SHALL invoke the open() method to specify the HTTP method and the Request-URI for the
request. In this case, the POST method with a Request-URI of <IG URL>/PENDING_IG SHALL be used as
specified in [OIPF_PROT2].

11. The DAE application SHALL invoke the setRequestHeader() method to populate each HTTP header as
specified in [OIPF_PROT2]. This method SHALL be invoked for each required HTTP header. For example, the
X-OITF-Response-Line specifies the SIP response line for the SIP response. The Call-ID is specified in the
X-OITF-Call-ID header.

12. The DAE application SHALL invoke the send() method to send the HTTP request. If there is a SIP response body,
it is included as a parameter to the send() method. The SIP response body message is carried in the HTTP body for
the HTTP request to the PENDING_IG Request-URI.

In the case where the OITF does not need to receive any further incoming in-session SIP requests, the [H3] HTTP POST
in step 11 SHALL be directed to the <IG_URL>/SIP Request-URI.

5.3.2.3 HNI-IGI transaction for out of session inco ming request messages

This message direction applies to incoming messages on the HNI-IGI interface which are not related to an existing
session. An example of this is a SIP MESSAGE message received from the network, coming e.g. from an IPTV
application or from another user. The following figure illustrates the sequences of out-of-session transactions for in-
coming requests from the IG to OITF.

Figure 11 describes what happens when the OITF is first turned on.

Page 60 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 11: What happens when the OITF is first turned on

1) When the OITF is turned on the OITF SHALL send a HNI_IGI IG registration message to register the default user.

2) The IG Registers the default user in the IMS network.

3) The IMS network returns 200 OK.

4) a 200 OK message SHALL be returned on the HNI_IGI.

5) If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a PENDING_IG
message to the IG, for the default user and with the call_id set to null. The steps to send PENDING_IG are the
same as steps 8-11 from Section 5.3.2.2.

6) The OITF performs service selection and discovery and loads the initial DAE page.

7) DAE IMS applications that desires to receive unsolicited notifications SHALL issue a
subscribetoIMSNotifications() method (as defined in Section 7.8).

8) When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the default user, including
new applications.

9) The IG re-registers the default user in the IMS network.

10) The IMS network returns 200 OK.

11) A 200 OK message SHALL be returned on the HNI_IGI.

Figure 12 describes what happens when a specific user logs in using the DAE interface.

Page 61 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 12: User logs in using the DAE interface

1) When the user desires to login the DAE SHALL call the registerUser() method to register the user.

2) The OITF SHALL send a HNI_IGI IG registration message to register the user.

3) The IG Registers the user in the IMS network.

4) The IMS network returns 200 OK.

5) A 200 OK message SHALL be returned on the HNI_IGI.

6) If there are native IMS applications that may receive unsolicited messages the OITF SHALL send a PENDING_IG
message to the IG, for the default user and with the call_id set to null. The steps to send PENDING_IG are the
same as steps 8-11 from Section 5.3.2.2.

7) DAE IMS applications for the user that desires to receive unsolicited notifications SHALL issue a
subscribetoIMSNotifications() method (as defined in Section 7.8).

8) When applicable the OITF SHALL send a HNI_IGI IG registration message to re-register the user, including new
applications.

9) The IG re-registers the default user in the IMS network.

10) The IMS network returns 200 OK.

11) a 200 OK message SHALL be returned on the HNI_IGI.

Page 62 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 13 describes what happens when an unsolicited message arrives from the network. The precondition is that a DAE
application is already running and subscribed to the IMS notifications (refer to previous sequence when user logs in).

DAE app Registration Function

IMS CSIG

OITF

4. onIMSNotification ((to, from, call_id, [icsi],<HTTP headers>,<SIP headers>,[<SIP body>]))

6. sip_message_response_x

1. sip_message_x (body)

2. 200 OK (NOTIFICATION_NEW_DIAL, to, call_id, <HTTP headers>,<SIP headers>,[<SIP body>]))

5. HNI_IGI (IG MESSAGE, call_id, <HTTP headers>,<SIP headers>,[<SIP body>])

3. HTTP POST (PENDING_IG, user_default, call_id (null))

(javascript) (native code)

Start new

new-dialog Pending-IG

Notify Application

registration function that

new dialog request received

for call_id

Buffer incoming message

with a configurable timeout.

Figure 13: Unsolicited message from the network

1) A SIP message arrives from the network.

2) The IG responds to the PENDING_IG request.

3) The OITF SHALL immediately issue a new PENDING_IG request after receiving a response on a PENDING_IG
request. The steps to send PENDING_IG are the same as steps 8-11 from Section 5.3.2.2.

4) The OITF SHALL call the callback function onIMSNotification for the corresponding application. This
includes the IMS message.

5) The OITF MAY respond to the network with a new outgoing message. The steps to send PENDING_IG are the
same as steps 8-11 from Section 5.3.2.2.

6) If the OITF sends a message the IG SHALL forward it to the network.

Page 63 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6 Formats

6.1 CE-HTML
An OITF SHALL support the XHTML profile defined in Section 5.4 of [CEA-2014-A], with the exceptions as defined in
Annex B.

NOTE: the list of default embedded objects and related Javascript APIs are defined in Section 7.

6.2 CE-HTML referenced formats
This section provides more details about formats used by CE-HTML

This section modifies the sections of [CEA-2014-A] which reference externally defined formats. In the absence of
modifications below, those sections SHALL apply.

• JPEG: Support for lossless and hierarchical modes and arithmetic coding of DCT coefficients is OPTIONAL. The
thumbnail feature of [JFIF] is OPTIONAL. OITFs not supporting thumbnails SHALL skip them if present and
continue decoding the rest of the image.

6.3 Media formats
This section describes the main requirements for the format and usage of codecs in media referred to by DAE
applications. This section also describes memory audio.

6.3.1 Media format of A/V media except for audio fr om memory

This section describes the format and usage of the A/V media codec except for audio from memory.

• Format and usage of video codec SHALL adhere to Section 5 of [OIPF_MEDIA2].

• Format and usage of subtitles format SHALL adhere to Section 6 of [OIPF_MEDIA2].

• Format and usage of teletext format SHALL adhere to Section 7 of [OIPF_MEDIA2].

• Format and usage of audio codec SHALL adhere to Section 8 of [OIPF_MEDIA2], except for Section 8.1.1.2, 8.1.5
and 8.2.1 which are covered in Section 6.3.2.

6.3.2 Media format of A/V media for audio from memo ry

This section describes the format and usage of the A/V media codec for audio from memory. Usage of corresponding
A/V media object is described in Section 7.14 of this document.

For the audio from memory format, HE-AAC SHALL be supported by the OITF and WAVE MAY be supported by the
OITF.

• Format and usage of HE-AAC audio from memory SHALL adhere to Section 8.1.1.2 and 8.2.1 of [OIPF_MEDIA2].

• Format and usage of WAVE audio from memory SHALL adhere to Section 8.1.5 and 8.2.1 of [OIPF_MEDIA2].

6.3.3 Media transport

Format and usage of media transports referred to by DAE applications SHALL adhere to Section 4 of [OIPF_MEDIA2].

6.4 SVG
This section contains extensions and modifications to [SVG Tiny 1.2] and to [CEA-2014-A].

Page 64 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6.4.1 Supporting SVG documents

OITF SHALL support [SVG Tiny 1.2] documents with the extensions to [CEA-2014-A] described in this subsection.
These extensions SHALL be accomplished by means of the following text:

[Req 5.2.1.a] The following extensions apply:

• A Remote UI Client Capability Description SHALL include the following element in order to convey support for
SVG:

<mime-extensions>image/svg+xml</mime-extensions>

[Req 5.2.2.f] The following extensions apply:

• Referenced content SHALL adhere to the image/svg+xml MIME type.

[Req. 5.3.a] The following extensions apply:

• If an Accept request header is used, then its value SHALL contain the string “image/svg+xml”.

• If an Accept-Encoding and an Accept request header are used, then the value of the Accept-Encoding
header SHALL contain the string “gzip” and “deflate”.

[Req. 5.4.a] The following extensions apply:

• A Remote UI Client SHALL include a Conforming Dynamic SVG Viewer as defined by [SVG Tiny 1.2] .

The following applies to item 8):

• Compliant image content SHALL include the MIME type image/svg+xml as defined by [SVG Tiny 1.2] .

[Req. 5.10.b] The following extensions apply:

• SVG viewer SHALL support SVG image content which uses logical coordinates greater than the resolution
supported by the <width> and <height> parameters of the Remote UI Client capability.

[Annex G, Table 5] The following extensions apply:

• The type attribute of an <a> element tag SHALL specify the value image/svg+xml if a link to an SVG
document is defined.

• The element tag SHALL allow image of content-type image/svg+xml to be used.

• The <object/> element tag SHALL allow content of content-type image/svg+xml to be used.

• Elements, attributes or properties other than those defined in [SVG Tiny 1.2] MAY be ignored.

6.4.2 Supporting DOM access between CE-HTML and SVG

6.4.2.1 Parent CE-HTML access to child SVG

In order to enable scripts in a CE-HTML document to access DOM objects in a child SVG document, the following
extensions SHALL be applied to [CEA-2014-A]:

• [5.4.a] XHTML Profile (CE-HTML); The following applies to item 3) d):

o The HTMLObjectElement interface, including the contentDocument attribute of this interface, SHALL be
supported for SVG documents. If the contentDocument property of HTMLObjectElement refers to a [SVG
Tiny 1.2] document, then the available methods and properties for the contentDocument are limited to the
common subset of the [SVG Tiny 1.2] uDOM and the Element interface defined in [DOM 2 Core].

o Methods blur() and focus() SHALL be supported for SVG documents and SHALL have the same
semantics as specified for interface HTMLInputElement.

• [Annex I, Table 9] The following extensions apply:

Page 65 (356)

 Copyright 2010 © Open IPTV Forum e.V.

add HTMLObjectElement interface with the following properties and functions as defined by [DOM 2 HTML]:
align, border, contentDocument, data, height, hspace, name, tabindex, type,
vspace, width, blur(), focus();

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition

to that defined above)

HTMLObjectElement

#HTMLElement
align(*)
border(*)
contentDocument(**)
data
height
hspace(*)
name(*)
tabindex
type
vspace(*)
width
blur()(**)
focus()(**)

(*) use of this attribute is
deprecated

(**) at least supported for SVG
content

Table 6: HTMLObjectElementHTMLObjectElementHTMLObjectElementHTMLObjectElement interface

6.4.2.2 Child SVG access to parent CE-HTML

In order to enable scripts in an SVG document to access DOM objects in its parent CE-HTML document, the following
extensions SHALL be applied to [CEA-2014-A]:

• [5.4.2.a] The following extensions to be added to item 1) Properties - j) readonly String name:

o If a window object is associated with an embedded document, then the name property of the window SHALL
match the name property of the element that generated the embedded document.

• [5.4.2.a] The following extensions to be added to item 1) Properties x):

o x)readonly Element frameElement - Property frameElement SHALL resolve to the embedding element
object or null if there is no such element.

• [Annex I, Table 9] The following extensions apply:

o under window object entry, add read-only property frameElement;

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition to

that defined above)

Window frameElement(available to
DocumentViews of embedded SVG
documents)
cea2014_protocol_version
cea2014_protocol_subversionNr
document
frames
history
innerHeight
innerWidth
location
id
name
onblur
onfocus
onkeypress

Additional implementation/authoring
requirements:

The methods and properties SHALL
adhere to [Req.5.4.2.a].

(*) Method download() is only
mandatory for Remote UI Clients
for which <download> is true in
their capability profile.

(**) Method

Page 66 (356)

 Copyright 2010 © Open IPTV Forum e.V.

onkeydown
onkeyup
httptimeout(****)
parent
top
maxHeight(****)
maxWidth(****)
topmost(****)
height(****)
width(****)
focus()
setTimeout()
clearTimeout()
setRenderMode()
openURL()(****)
reload()(****)
replace()(****)
requestFocus()(****)
setHttpTimeout()(****)
setTimer()(****)
clearTimer()(****)
getFrame()(****)
escapeBeyondTopmost()(****)
exitUnit()(****)
download()(*)
subscribeToNotifications()(**)
XMLHttpRequest(***)

subscribeToNotifications is only
mandatory for i-Box clients.

(***) Property XMLHttpRequest is
only mandatory for i-Box clients.

(****) CEA-2027-A specific method
that may not be supported as per
Annex B of this DAE specification.

Table 7: WindowWindowWindowWindow interface

Add the DocumentView interface (defined in Table 8) to uDOM defined in [SVG Tiny 1.2]. It is a subset of [DOM 2
Views]. The DocumentView interface provides the access to innermost Window object so that child document can
access to parent document. It has defaultView property described as follows:

interface DocumentViewDocumentViewDocumentViewDocumentView

{

 readonly Window defaultView;

}

defaultView resolves to the innermost Window
object into which the Document is presented.

If the window object is CE-HTML based, then the
available methods and properties for the
defaultView.frameElement are limited to the
common subset of the [SVG Tiny 1.2] uDOM and
DOM Core L2 Element interface.

Table 8: DocumentViewDocumentViewDocumentViewDocumentView interface to be added to uDOM

The SVGDocument interface also changes to inherit the DocumentView interface.

6.4.2.3 Parent SVG access to child CE-HTML

In order to enable scripts in an SVG document to access DOM objects in a child CE-HTML document, the following
extensions SHALL be applied to [SVG Tiny 1.2] :

• Add SVGForeignElement interface to uDOM defined in [SVG Tiny 1.2]. This interface represents the
‘foreignObject’ element in the SVG document.

interface SVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElement

{

 Document contentDocument;

}

The document this object contains, if there is any
and it is available, or null otherwise.

If this document is CE-HTML based, then the
available methods and properties for the document
are limited to the common subset of the [SVG Tiny
1.2] uDOM and DOM Core L2 Element interface.

Page 67 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Table 9: SVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElementSVGForeignObjectElement interface to be added to uDOM

6.4.2.4 Child CE-HTML access to parent SVG

In order to enable scripts in a CE-HTML document to access DOM objects in its parent document, the following
extensions SHALL be applied to [CEA-2014-A]:

• [5.4.a] XHTML Profile (CE-HTML); The following to be added to item 3) DOM2 - f)

o f) DOM level 2 Views , with at least providing support property defaultView which SHALL resolve to the
innermost Window scripting object into which the Document is presented. If Window object is [SVG Tiny 1.2]
based, then the available methods and properties for the defaultView.frameElement are limited to the
common subset of the [SVG Tiny 1.2] uDOM and [DOM 2 Core] Element interface.

• [Annex I, Table 9] The following extensions apply:

o under Document interface entry, add read-only property defaultView;

Scripting Interface
(informative)

Properties and Methods
(informative)

Additional Requirements and
Recommendations (in addition to that

defined above)

Document #Node
defaultView
doctype
documentElement
implementation
createAttribute()
createAttributeNS()
createCDATASection()
createComment()
createDocumentFragment()
createElement()
createElementNS(),
createEntityReference()
createProcessingInstruct
ion()
createTextNode()
getElementById()
getElementsByTagName()
getElementsByTagNameNS()
importNode()

Additional implementation/authoring
guideline:

CE-HTML clients MAY not provide full
support for XML namespaces and
processing instructions, hence methods
getElementByTagNameNS(),
createAttributeNS(),
createElementNS(),and
createProcessingInstruction() MAY
not be supported.

Table 10: DocumentDocumentDocumentDocument interface

In order to support access from [SVG Tiny 1.2] document to the CE-HTML document, the following extensions SHALL
be applied to [SVG Tiny 1.2]:

• Add Window interface to the uDOM defined in [SVG Tiny 1.2]. Window interface is subset to the Window object
defined in the W3C WebAPI activity [Window Object]. The Window interface provides the access to other
documents in a compound document by reference.

interface Window
{ readonly String name;
 readonly Element frameElement;
}

If a Window object is associated with an
embedded document, then the name property of
the window SHALL match the name property of the
element that generated the embedded document.

frameElement property contains reference to
embedded element or null if there is no such
element.

Table 11: WindowWindowWindowWindow interface to be added to uDOM

Page 68 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6.4.2.5 Event propagation

For documents embedded as children of another document (e.g. an SVG document embedded in a CE-HTML document),
events targeted at elements in the child document typically are not dispatched to nodes in the parent document.. However,
events will still be dispatched to other applications as defined in Section 7.2.6.

No event listener in parent catches any event in child document. If user pushes key button when an [SVG Tiny 1.2]
element is focused, then KeyEvent occurs on the focused [SVG Tiny 1.2] element and it typically does not propagate to
the CE-HTML document.

To accomplish setting and moving focus through [SVG Tiny 1.2] and CE-HTML document, following extension SHALL
be applied.

• [Req. 5.4.1.m] The following extensions apply:

o If an HTML document includes <object> elements whose type attribute value is image/svg+xml, then the
Remote UI Client SHALL (1) offer a means to set focus to any SVG element type for which an event listener
SHALL be registered, and (2) generate appropriate DOM 2 focus events accordingly.

• [Req. 5.4.1.n] The following extensions apply:

o If an HTML document includes <object> elements whose type attribute value is image/svg+xml, then the
Remote UI Client SHALL (1) offer a means to move focus away from any SVG element type for which an event
listener SHALL be registered, and (2) generate appropriate DOM 2 focus events accordingly.

In order to pass an event that occurred in the CE-HTML document to a script in [SVG Tiny 1.2], the following
extensions SHALL be applied to [SVG Tiny 1.2] :

• Add DocumentEvent interface to uDOM defined in [SVG Tiny 1.2]. It is same as DocumentEvent in DOM
Level 2 Events. SVGDocument interface also changes to inherit the DocumentEvent interface.

• Add the dispatchEvent method to EventTarget defined in [SVG Tiny 1.2]

6.4.2.5.1 DocumentEvent

The DocumentEvent interface provides a mechanism by which the user can create an Event of a type supported by
the implementation.

6.4.2.5.1.1 Methods

Event createEventcreateEventcreateEventcreateEvent(DOMString eventType)

Description Create a specified event. If specified eventType is supported, newly created
Event object is returned. Otherwise, null is returned.

Arguments eventType The type of Event interface to be created.

6.4.2.5.2 EventTarget

6.4.2.5.2.1 Methods

Boolean dispatchEventdispatchEventdispatchEventdispatchEvent(Event evt)

Description This method allows the dispatch of events into the implementations event model.
The return value of dispatchEvent indicates whether any of the listeners which
handled the event called preventDefault. If preventDefault was called the
value is false, else the value is true.

Page 69 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Arguments evt Specifies the event type, behavior, and
contextual information to be used in
processing the event.

NOTE: The following methods are described in the uDOM defined in [SVG Tiny 1.2]:

void addEventListeneraddEventListeneraddEventListeneraddEventListener(String type, EventListener listener, Boolean useCapture)

void removeremoveremoveremoveEventListenerEventListenerEventListenerEventListener(String type, EventListener listener, Boolean useCapture)

void addEventListenerNSaddEventListenerNSaddEventListenerNSaddEventListenerNS(String namespaceURI, String type, EventListener listener,
Boolean useCapture, DOMObject evtGroup)

void removeEventListenerNSremoveEventListenerNSremoveEventListenerNSremoveEventListenerNS(String namespaceURI, String type, EventListener
listener, Boolean useCapture, DOMObject evtGroup)

6.4.3 Attention to DAE application developers

6.4.3.1 Script APIs defined in DAE

The use of any script APIs defined in the DAE specification in script code inside an SVG document is not defined. The
script code in [SVG Tiny 1.2] document SHALL be able to call functions on DOM nodes in [CEA-2014-A] document
and vice versa. The present document does not define how to include CE-HTML embedded objects directly in [SVG
Tiny 1.2] documents.

6.4.3.2 Codec and connection supporting in SVG

DAE applications SHALL NOT rely upon codec support for the use of audio and video elements from [SVG Tiny 1.2].

DAE applications SHALL NOT rely upon support for use of Connection from [SVG Tiny 1.2].

Page 70 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7 APIs

7.1 Object factory API
This section defines the methods to check and create an instance of the DAE defined embedded objects within Javascript.

The OITF SHALL support a globally accessible object of type “OipfObjectFactory” as a static property
"oipfObjectFactory" of the Window interface with the API as defined in this section. The object factory SHALL
ensure that the referenced objects are correctly set up. This is an alternative to instantiating embedded objects (or plug-
ins) outside of Javascript.

The factory object can be accessed as a property of the window object (i.e. window.oipfObjectFactory or
oipfObjectFactory).

7.1.1 Methods

Boolean OipfObjectFactory.isObjectSuisObjectSuisObjectSuisObjectSupportedpportedpportedpported(String mimeType)

Description This method SHALL return true if and only if an object of the specified type is supported
by the OITF. The method SHALL return false if the MIME type passed as a parameter is
not supported by the client.

Arguments mimeType The mimeType may have any of the MIME types defined in tables 1
to 4 of [OIPF_META2] (for example, “video/mpeg” or “audio/x-
wav”) or any of the DAE defined mime types listed below.

DAE MIME Type

application/notifsocket

application/oipfApplicationManager

application/oipfCapabilities

application/oipfCodManager

application/oipfConfiguration

application/oipfDownloadManager

application/oipfDownloadTrigger

application/oipfDrmAgent

application/oipfGatewayInfo

application/oipfIMS

application/oipfMDTF

application/oipfParentalControlManager

application/oipfRecordingScheduler

application/oipfRemoteControlFunction

Page 71 (356)

 Copyright 2010 © Open IPTV Forum e.V.

application/oipfRemoteManagement

application/oipfSearchManager

application/oipfStatusView

video/broadcast

7.1.1.1 Visual objects

The methods in this section all return HTMLObjectElement objects which can be inserted in to the DOM tree. All
objects in Section 7 which have a visual representation on the screen can be created using methods in this section. Only
for objects defined in Section 7, that are supported by the device (i.e. as indicated through the client capability
description), a corresponding method name to instantiate the object through the OipfObjectFactory class can be
assumed to be present on the oipfObjectFactory object. For any other object, a corresponding method name cannot
be assumed to be present.

HTMLObjectElement oipfObjectFactory.createVideoBroadcastcreateVideoBroadcastcreateVideoBroadcastcreateVideoBroadcastObjectObjectObjectObject()

HTMLObjectElement oipfObjectFactory.createVideoMpegcreateVideoMpegcreateVideoMpegcreateVideoMpegObjectObjectObjectObject()

HTMLObjectElement oipfObjectFactory.createStatusViewcreateStatusViewcreateStatusViewcreateStatusViewObjectObjectObjectObject()

Description If the object type is supported, each of these methods shall return an instance of the
corresponding embedded object.

Since objects do not claim scarce resources when they are instantiated,
instantiation shall never fail if the object type is supported. If the method name to
create the object is not supported, the OITF SHALL throw an error with the
error.name set to the value "TypeError".

If the object type is supported, the method shall return an HTMLObjectElement
equivalent to the specified object. The value of the type attribute of the
HTMLObjectElement SHALL match the mimetype of the instantiated object, for
example "video/broadcast" in case of method
oipfObjectFactory.createVideoBroadcastObject().

7.1.1.2 Non-Visual objects

The methods in this section all return javascript objects which implement the interfaces of their corresponding objects.
They can not be inserted in the DOM tree. All objects in Section 7 which do *not* have a visual representation on the
screen can be created using methods in this section. Only for objects defined in Section 7, that are supported by the
device (i.e. as indicated through the client capability description), a corresponding method name to instantiate the object
through the OipfObjectFactory class can be assumed to be present on the oipfObjectFactory object. For any
other object, a corresponding method name cannot be assumed to be present.

Object oipfObjectFactory.createApplicationManagercreateApplicationManagercreateApplicationManagercreateApplicationManagerObjectObjectObjectObject()

Object oipfObjectFactory.createCapabilitiesObjectcreateCapabilitiesObjectcreateCapabilitiesObjectcreateCapabilitiesObject()

ChannelConfig oipfObjectFactory.createChannelConfigcreateChannelConfigcreateChannelConfigcreateChannelConfig()

Object oipfObjectFactory.createCodManagercreateCodManagercreateCodManagercreateCodManagerObjectObjectObjectObject()

Page 72 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Object oipfObjectFactory.createConfigurationcreateConfigurationcreateConfigurationcreateConfigurationObjectObjectObjectObject()

Object oipfObjectFactory.createDownloadManagercreateDownloadManagercreateDownloadManagercreateDownloadManagerObjectObjectObjectObject()

Object oipfObjectFactory.createDownloadTriggercreateDownloadTriggercreateDownloadTriggercreateDownloadTriggerObjectObjectObjectObject()

Object oipfObjectFactory.createDrmAgentcreateDrmAgentcreateDrmAgentcreateDrmAgentObjectObjectObjectObject()

Object oipfObjectFactory.createGatewayInfocreateGatewayInfocreateGatewayInfocreateGatewayInfoObjectObjectObjectObject()

Object oipfObjectFactory.createcreatecreatecreateIMSIMSIMSIMSObjectObjectObjectObject()

Object oipfObjectFactory.createMDTFObjectcreateMDTFObjectcreateMDTFObjectcreateMDTFObject()

Object oipfObjectFactory.createNotifSocketcreateNotifSocketcreateNotifSocketcreateNotifSocketObjectObjectObjectObject()

Object oipfObjectFactory.createParentalControlManagercreateParentalControlManagercreateParentalControlManagercreateParentalControlManagerObjectObjectObjectObject()

Object oipfObjectFactory.createRecordingSchedulercreateRecordingSchedulercreateRecordingSchedulercreateRecordingSchedulerObjectObjectObjectObject()

Object oipfObjectFactory.createRemoteControlFunctionObjectcreateRemoteControlFunctionObjectcreateRemoteControlFunctionObjectcreateRemoteControlFunctionObject()

Object oipfObjectFactory.createRemoteManagementcreateRemoteManagementcreateRemoteManagementcreateRemoteManagementObjectObjectObjectObject()

Object oipfObjectFactory.createSearchManagercreateSearchManagercreateSearchManagercreateSearchManagerObjectObjectObjectObject()

Description If the object type is supported, each of these methods SHALL return an instance of
the corresponding embedded object. This may be a new instance or existing
instance. For example, the object will likely be a global singleton object and calls to
this method may return the same instance.

Since objects do not claim scarce resources when they are instantiated,
instantiation SHALL never fail if the object type is supported. If the method name to
create the object is not supported, the OITF SHALL throw an error with name
property set to the value "TypeError".

If the object is supported, the method SHALL return a javascript Object which
implements the interface for the specified object.

7.1.2 Examples

This section provides examples of the usage of the methods.

The first example shows how to query whether an instance of the A/V Control object for a specified MIME type can be
created without the application having to attempt to instantiate the object.

var videoPlayer;
if (window.oipfObjectFactory.isObjectSupported(“video/mpeg”)) {
 videoPlayer = window.oipfObjectFactory.createVideoMpegObject();
 // append object to document
 document.getElementById(‘playerDiv’).appendChild(videoPlayer);
 videoPlayer.data = “rtsp://server/barker_channel”;
}

If the OITF does not support the created object the OITF SHALL throw an error with the error.name set to the value
"TypeError". The example below shows how this can be used by applications:

try {
 configuration = window.oipfObjectFactory.createConfigurationObject();
}
catch (error) {

Page 73 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 alert("application/oipfConfiguration object could not be created - error name: "
+ error.name + " - error message: " + error.message);
}

7.2 Application Management APIs
An OITF providing DAE application capability SHALL implement the behaviour of the classes defined in this section.

7.2.1 The application/oipfApplicationManager embedd ed object

An OITF SHALL support a non-visual embedded object of type “application/oipfApplicationManager”, with
the following Javascript API, to enable applications to access the privileged functionality related to application lifecycle
and management that is provided by the application model defined in this section.

If one of the methods on the application/oipfApplicationManager is called by a webpage that is not a
privileged DAE application, the OITF SHALL throw an error as defined in Section 10.1.1.

7.2.1.1 Constants

The following constants are defined as properties of the application/oipfApplicationManager embedded
object:

Name Value Use

WIDGET_INSTALLATION_STARTED 0 The Widget installation has started

WIDGET_INSTALLATION_COMPLETED 1 The Widget installation has completed
successfully

WIDGET_INSTALLATION_FAILED 2 The Widget installation has failed

WIDGET_UNINSTALLATION_STARTED 3 The Widget uninstallation has started

WIDGET_UNINSTALLATION_COMPLETED 4 The Widget uninstallation has completed
successfully

WIDGET_UNINSTALLATION_FAILED 5 The Widget uninstallation has failed

WIDGET_ERROR_STORAGE_AREA_FULL 10 The local storage device is full

WIDGET_ERROR_DOWNLOAD 11 The Widget cannot be downloaded

WIDGET_ERROR_INVALID_ZIP_ARCHIVE 12 The Widget package is corrupted or is an
Invalid Zip Archive (as defined in [Widgets-
Packaging])

WIDGET_ERROR_INVALID_SIGNATURE 13 Widget's Signature Validation failed

WIDGET_ERROR_GENERIC 14 Other reason

7.2.1.2 Properties

function onLowMemoryonLowMemoryonLowMemoryonLowMemory()

The function that is called when the OITF is running low on available memory for running DAE

Page 74 (356)

 Copyright 2010 © Open IPTV Forum e.V.

applications. The exact criteria determining when to generate such an event is implementation specific.

function onApplicationLoadedonApplicationLoadedonApplicationLoadedonApplicationLoaded(Application appl)

The function that is called immediately prior to a load event being generated in the affected
application. The specified function is called with one argument appl, which provides a reference to the
affected application.

function onApplonApplonApplonApplicationUnloadedicationUnloadedicationUnloadedicationUnloaded(Application appl)

The function that is called immediately prior to an unload event being generated in the affected
application. The specified function is called with one argument appl, which provides a reference to the
affected application.

function onWidgetInstallationonWidgetInstallationonWidgetInstallationonWidgetInstallation(WidgetDescriptor wd, Integer state, Integer
reason)

The callback function that is called during the installation process of a Widget. The function is called
with three arguments:

• WidgetDescriptor wd: the WidgetDescriptor for the installed Widget. Some attributes of
this argument may not have been initialised and may be null when the function is called until the
Widget is successfully installed.

• Integer state: the state of the installation; valid values are:

o WIDGET_INSTALLATION_STARTED,

o WIDGET_INSTALLATION_COMPLETED

o WIDGET_INSTALLATION_FAILED

as defined in Section 7.2.1.4.

• Integer reason: indicates the reason for installation failure. This is only valid if the value of the
state argument is WIDGET_INSTALLATION_FAILED otherwise this argument SHALL be null.
Valid values for this field are:

o WIDGET_ERROR_STORAGE_AREA_FULL

o WIDGET_ERROR_DOWNLOAD

o WIDGET_ERROR_INVALID_ZIP_ARCHIVE

o WIDGET_ERROR_INVALID_SIGNATURE

o WIDGET_ERROR_GENERIC

as defined in Section 7.2.1.4.

function onWionWionWionWidgetUninstallationdgetUninstallationdgetUninstallationdgetUninstallation(WidgetDescriptor wd, Integer state)

The function that is called during the uninstallation process of a Widget. The function is called with two

Page 75 (356)

 Copyright 2010 © Open IPTV Forum e.V.

arguments, defined below:

• WidgetDescriptor wd: the WidgetDescriptor of the Widget to be uninstalled.

• Integer state: the state of the installation; valid values are:

o WIDGET_UNINSTALLATION_STARTED,

o WIDGET_UNINSTALLATION_COMPLETED

o WIDGET_UNINSTALLATION_FAILED

as defined in Section 7.2.1.4.

readonly WidgetDescriptorCollection widgetswidgetswidgetswidgets

A collection of WidgetDescriptor objects for the Widgets currently installed on the OITF.

7.2.1.3 Methods

Integer getApplicationVisualizationModegetApplicationVisualizationModegetApplicationVisualizationModegetApplicationVisualizationMode()

Description Returns the current mode used by the OITF to visualize applications, whereby a return
value:

1 corresponds to the application visualization mode as defined by bullet 1) of
Section 4.4.6, i.e. multiple applications visible simultaneously with DAE
applications managing their own size, position and visibility

2 corresponds to the application visualization mode as defined by bullet 2) of
Section 4.4.6, i.e. multiple applications visible simultaneously with OITF
managing the size, position, visibility of applications

3 corresponds to the application visualization mode as defined by bullet 3) of
Section 4.4.6, i.e. only a single application visible at any time.

Application getOwnerApplicationgetOwnerApplicationgetOwnerApplicationgetOwnerApplication(Document document)

Description Get the application that the specified document is part of. If the document is not part of
an application, or the calling application does not have permission to access that
application, this method will return null.

Arguments document The document for which the Application object should be
obtained.

ApplicationCollection getChildApplicationsgetChildApplicationsgetChildApplicationsgetChildApplications(Application application)

Description Get the applications that are children of the specified application.

Arguments application The application whose children should be returned.

Page 76 (356)

 Copyright 2010 © Open IPTV Forum e.V.

void gcgcgcgc()

Description Provide a hint to the execution environment that a garbage collection cycle should be
initiated. The OITF is not required to act upon this hint.

void installWidgetinstallWidgetinstallWidgetinstallWidget(String uri)

Description Attempts to install on the OITF a Widget located at the URI passed. If the Widget is
stored on a remote server it SHALL first be downloaded. This specification does not
specify where the OITF stores the Widget package, nor does it define what happens
to the original package after the installation process has finished (regardless of
whether it succeeded or failed).

When trying to install a Widget with an “id” that collides with the id of an already
installed Widget (where the “id” is defined in Section 7.6.1 of [Widgets-Packaging]
along with the extension defined in Section 11.1 of this specification), the OITF
SHOULD ask the user for confirmation before installing the Widget. The OITF
SHOULD provide information about the conflict (e.g. the version numbers, if
available) to allow the user to decide whether to proceed with the installation or to
cancel it.

If the user confirms the installation, then the new Widget SHALL replace the one
already installed; any storage area associated with the replaced Widget SHALL be
retained. Note that the user can also choose to downgrade a Widget, i.e. install an
old version of the Widget to replace the installed, more recent, one.

Arguments uri The resource locator in form of a URI, which points to a Widget
package to be installed.

void uninstallWidgetuninstallWidgetuninstallWidgetuninstallWidget(WidgetDescriptor wd)

Description Uninstalls a Widget. If this Widget is running it will be stopped. Any storage areas
associated with the uninstalled Widget SHALL be deleted.

Arguments wd A WidgetDescriptor object for a Widget installed on the OITF.

7.2.1.4 Events

For the intrinsic events listed in the table below a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onLowMemory LowMemory Bubbles: No

Cancelable: No

Context Info: None

onApplicationLoaded ApplicationLoaded Bubbles: No

Cancelable: No

Page 77 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Context Info: appl

onApplicationUnloaded ApplicationUnloaded Bubbles: No

Cancelable: No

Context Info: appl

onWidgetInstallation WidgetInstallation Bubbles: No

Cancelable: No

Context: wd, state,
reason

onWidgetUninstallation WidgetUninstallation Bubbles: No

Cancelable: No

Context: wd, state

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfApplicationManager object. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.2.2 The Application class

The Application class is used to implement the characteristics of a DAE application.

7.2.2.1 Properties

readonly Boolean visiblevisiblevisiblevisible

true if the application is visible, false otherwise. The value of this property is not affected by the
application's Z-index or position relative to other applications. Only calls to the show() and hide()
methods will affect its value.

readonly Boolean activeactiveactiveactive

true if the application is in the list of currently active applications, false otherwise (as defined in
Section 4.3.8).

readonly StringCollection permissionspermissionspermissionspermissions

StringCollection object containing the names of the permissions granted to this application.

readonly Boolean isPrimaryReceiverisPrimaryReceiverisPrimaryReceiverisPrimaryReceiver

Page 78 (356)

 Copyright 2010 © Open IPTV Forum e.V.

true if the application receives cross application events before any other application, false otherwise.

readonly Window windowwindowwindowwindow

A strict subset of the DOM Window object representing the application. No symbols from the window
object are accessible through this property except the following:

• void postMessagepostMessagepostMessagepostMessage(any message, String targetOrigin)

readonly ApplicationPrivateData privateprivateprivateprivateDataDataDataData

Access the current application’s private data object.

If the application accessing the privateData property is not the current application, the OITF SHALL
throw an error as defined in section 10.1.1.

function onApplicationActivatedonApplicationActivatedonApplicationActivatedonApplicationActivated()

function onApplicationDeactivatedonApplicationDeactivatedonApplicationDeactivatedonApplicationDeactivated()

function onApplicationShownonApplicationShownonApplicationShownonApplicationShown()

function onApplicationHiddenonApplicationHiddenonApplicationHiddenonApplicationHidden()

function onApplicationPrimaryReceiveronApplicationPrimaryReceiveronApplicationPrimaryReceiveronApplicationPrimaryReceiver()

function onApplicationNotPrimaryReceiveronApplicationNotPrimaryReceiveronApplicationNotPrimaryReceiveronApplicationNotPrimaryReceiver()

function onApplicationTopmostonApplicationTopmostonApplicationTopmostonApplicationTopmost()

function onApplicationNotTopmostonApplicationNotTopmostonApplicationNotTopmostonApplicationNotTopmost()

function onApplicationDestroyRequestonApplicationDestroyRequestonApplicationDestroyRequestonApplicationDestroyRequest()

function onApplicationonApplicationonApplicationonApplicationHibernateHibernateHibernateHibernateReReReRequestquestquestquest()function onKeyPressonKeyPressonKeyPressonKeyPress

function onKeyUponKeyUponKeyUponKeyUp

function onKeyDownonKeyDownonKeyDownonKeyDown

Each of these event handlers represents a DOM 0 event handler that corresponds to one of the events
listed in Sections 7.2.1.4 and 7.2.6.

7.2.2.2 Methods

void showshowshowshow()

Description If the application visualization mode as defined by method
getApplicationVisualizationMode() in Section 7.2.1.3 is:

1 : Make the application visible.

Page 79 (356)

 Copyright 2010 © Open IPTV Forum e.V.

2 : Make the application visible. Calling this method from the application itself may
have no effect.

3 : Request to make the application visible.

This method only affects the visibility of an application. In the case where more than
one application is visible, calls to this method will not affect the z-index of the
application with respect to any other visible applications.

void hidehidehidehide()

Description If the application visualization mode as defined by method
getApplicationVisualizationMode() in Section 7.2.1.3 is:

1 : Make the application invisible.

2 : Make the application invisible. Calling this method from the application itself may
have no effect.

3 : Request to make the application invisible.

Calling this method has no effect on the lifecycle of the application.

void activateactivateactivateactivateInputInputInputInput(Boolean gainFocus)

Description Move the application to the front of the active applications list. If the application has
been hidden using Application.hide(), this method does not cause the
application to be shown.

If the application visualization mode as defined by method
getApplicationVisualizationMode() in Section 7.2.1.3 is:

1 : The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true.

2 : The application’s Window object SHALL be moved to the top of the stack of visible
applications. In addition, the application’s Window object SHALL gain input focus if
argument gainFocus has value true.Calling this method from the application itself
MAY have no effect.

3 : Request to make the application’s Window object visible. Once visible, the
application SHALL be given input focus, irrespective of the value for argument
gainFocus.

void deactivatedeactivatedeactivatedeactivateInputInputInputInput()

Description Remove the application from the active applications list. This has no effect on the
lifecycle of the application and MAY have no effect on the resources it uses.
Applications which are not active will receive no cross-application events, unless their
Application object is the target of the event (as for the events defined in Section
7.2.6). Applications may still be manipulated via their Application object or their
DOM tree.

Page 80 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Application createApplicationcreateApplicationcreateApplicationcreateApplication(String uri, Boolean createChild)

Description Create a new application and add it to the application tree. Calling this method does
not automatically show the newly-created application.

This call is asynchronous and may return before the new application is fully loaded.
An ApplicationLoaded event will be targeted at the Application object when the
new application has fully loaded.

If the application cannot be created, this method SHALL return null.

Arguments uri The URI of the first page of the application to be created or the
localURI of a Widget as defined in Section 7.2.8.1.1.

createChild Flag indicating whether the new application is a child of the current
application. A value of true indicates that the new application
should be a child of the current application; a value of false
indicates that it should be a sibling.

void destroyApplicationdestroyApplicationdestroyApplicationdestroyApplication()

Description Terminate the application, detach it from the application tree, and make any
resources used available to other applications. When an application is terminated,
any child applications shall also be terminated.

Application startWidgetstartWidgetstartWidgetstartWidget(WidgetDescriptor wd, Boolean createChild)

Description Starts a Widget installed on the OITF. The behaviour of this method is equivalent to
that of Application.createApplication().

The Widget is identified by its WidgetDescriptor. To get a list of the
WidgetDescriptor objects for the installed Widgets one can check
ApplicationManager.widgets property. If the Widget is already running or fails to
start this call will return null.

Arguments wd a WidgetDescriptor object for a Widget installed on the OITF.

createChild Flag indicating whether the new application is a child of the current
application. A value of true indicates that the new application
should be a child of the current application; a value of false
indicates that it should be a sibling.

void stopWidgetstopWidgetstopWidgetstopWidget(WidgetDescriptor wd)

Description Terminate a running Widget. The behaviour of this method is equivalent to that of
Application.destroyApplication().

Calling this method will detach the Widget from the application tree, and make any
resources used available to other applications. When a Widget is terminated, any
child applications shall also be terminated.

Arguments wd A WidgetDescriptor object for a Widget installed on the OITF.

Page 81 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.2.3 The ApplicationCollection class

typedef Collection<Application> ApplicationCollection

The ApplicationCollection class represents a collection of Application objects. See annex K for the
definition of the collection template.

7.2.4 The ApplicationPrivateData class

7.2.4.1 Properties

readonly Keyset keysetkeysetkeysetkeyset

The object representing the user input events sent to the DAE application.

readonly Boolean wakeupApplicationwakeupApplicationwakeupApplicationwakeupApplication

The wakeupApplication property is set if there has been a prepareWakeupApplication() request
by that application.

readonly Boolean wakeupOITFwakeupOITFwakeupOITFwakeupOITF

The wakeupOITF property is set if there has been a prepareWakeupOITF().

7.2.4.2 Methods

Integer getFreeMemgetFreeMemgetFreeMemgetFreeMem()

Description Let application developer query information about the current memory available to the
application. This is used to help during application development to find application
memory leaks and possibly allow an application to make decisions related to its
caching strategy (e.g. for images).

Returns the available memory to the application or -1 if the information is not available.

For example:

debug("[APP] free mem = " +
appman.getOwnerApplication(window.document).privateData.getFreeMem() + "\n");

Boolean prepareWakeupApplicationprepareWakeupApplicationprepareWakeupApplicationprepareWakeupApplication(String URI, String token, Date time)

Description The prepareWakeupApplication() method allows the DAE application to set-up
the OITF to wake-up at a specified time. The wake-up is limited to the OITF being in
the PASSIVE_STANDBY at the specified time. If the timer expires while the DAE
application is in a different state it is silently ignored.

Only one wake-up is to be supported for a DAE application. If a previous wake-up
request had been registered it SHALL be overwritten.

Page 82 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the wake-up fails to be set-up this operation SHALL return false. Failure may be
due to OITF expecting to change to an OFF power state which would not allow the
wake-up request to survive.

Arguments URI The URI from which the content can be fetched.

token The token is a string which the application may retrieve with
clearWakeupToken().

time The time when the wake-up is to occur.

Boolean prepareWakeupOITFprepareWakeupOITFprepareWakeupOITFprepareWakeupOITF(Date time)

Description The prepareWakeupOITF() method allows the DAE application to set-up the OITF
to wake-up at a specified time. The wake-up is limited to the OITF being in the
PASSIVE_STANDBY or PASSIVE_STANDBY_HIBERNATE state at the specified time. If
the timer expires while the DAE application is in a different state it is silently ignored.

Unlike prepareWakeupApplication() this method applies to all the DAE
applications and not limited to a single DAE application

If the wake-up fails to be set-up this operation SHALL return false. Failure may be
due to OITF expecting to change to an OFF power state which would not allow the
wake-up request to survive.

Arguments time The time when the wake-up is to occur.

String clearWakeupTokenclearWakeupTokenclearWakeupTokenclearWakeupToken()

Description The clearWakeupToken() method shall return the token set in
prepareWakeupApplication() method. The wake-up token should be cleared once it
is read in order to limit usage to only when the DAE application starts up.

7.2.5 The Keyset class

The Keyset object permits applications to define which key events they request to receive. There are two means of
defining this. Common key events are represented by constants defined in this class which are combined in a bit-wise
mask to identify a set of key events. Less common key events are not included in one of the defined constants and form
part of an array.

The supported key events indicated through the capability mechanism in Section 9.3 SHALL be the same as the
maximum set of key events available to the browser as indicated through this object

The default set of key events available to applications which do not call Keyset.setValue SHALL be all those
indicated by the constants in this class which are supported by the OITF excluding those indicated by OTHER.

7.2.5.1 Constants

The following constants are defined as properties of the KeySet class:

Page 83 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Constant
name

Numeric
Value Use

RED 0x1 Used to identify the VK_RED key event.

GREEN 0x2 Used to identify the VK_GREEN key event.

YELLOW 0x4 Used to identify the VK_YELLOW key event.

BLUE 0x8 Used to identify the VK_BLUE key event.

NAVIGATION 0x10 Used to identify the VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT,
VK_ENTER and VK_BACK key events.

VCR 0x20 Used to identify the VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT,
VK_PREV, VK_FAST_FWD, VK_REWIND, VK_PLAY_PAUSE key events.

SCROLL 0x40 Used to identify the VK_PAGE_UP and VK_PAGE_DOWN key events.

INFO 0x80 Used to identify the VK_INFO key event.

NUMERIC 0x100 Used to identify the number events, 0 to 9.

ALPHA 0x200 Used to identify all alphabetic events.

OTHER 0x400 Used to indicate key events not included in one of the other constants
in this class.

7.2.5.2 Properties

readonly Integer valuevaluevaluevalue

The value of the keyset which this DAE application will receive.

readonly Integer otherKeys[]otherKeys[]otherKeys[]otherKeys[]

If the OTHER bit in the value property is set then this indicates those key events which are available
to the browser which are not included in one of the constants defined in this class, If the OTHER bit in
the value property is not set then this property is meaningless.

readonly Integer maximumValuemaximumValuemaximumValuemaximumValue

In combination with maximumOtherKeys, this indicates the maximum set of key events which are
available to the browser. When a bit in this maximumValue has value 0, the corresponding key events
are never available to the browser.

readonly Integer maximumOtherKeys[]maximumOtherKeys[]maximumOtherKeys[]maximumOtherKeys[]

If the OTHER bit in the maximumValue property is set then, in combination with maximumValue, this

Page 84 (356)

 Copyright 2010 © Open IPTV Forum e.V.

indicates the maximum set of key events which are available to the browser. For key events which are
not included in one of the constants defined in this class, if the VK_* constant representing the key is
not listed in this array then it is never available to the browser. If the OTHER bit in the value property is
not set then this property SHALL take the value undefined.

7.2.5.3 Methods

Integer setValuesetValuesetValuesetValue(Integer value, Integer otherKeys[])

Description Sets the value of the keyset which this DAE application requests to receive. Where
more than one DAE application is running, the events delivered to the browser
SHALL be the union of the events requested by all running DAE applications. Under
these circumstances, applications may receive events which they have not
requested to receive.

The return value indicates which keys will be delivered to this DAE application
encoded as bit-wise mask of the constants defined in this class. These key events
are defined using the VK_* constants defined in Annex F of [CEA-2014-A].

Arguments value The value is a number which is a bit-wise mask of the constants
defined in this class. For example;

myKeyset = myApplication.privateData.keyset;

myKeyset.setValue(0x00000013);
myKeyset.setValue(myKeyset.INFO | myKeyset.NUMERIC);

otherkeys This parameter is optional. If the value parameter has the OTHER
bit set then it is used to indicate the key events that the application
wishes to receive which are not represented by constants defined in
this class.

7.2.6 New DOM events for application support

New events have been created that are raised on the Application objects in the application tree. These are normal
events, not cross-application events, and are used to indicate changes in the state of an application.

Event Description

ApplicationActivated Issued when an application focus change occurs to inform the
recipient of the event that the application is now focussed.

ApplicationDeactivated Issued when an application focus change occurs to inform the
recipient of the event that the application is now no longer
focussed.

ApplicationShown Issued when an application has become visible.

ApplicationHidden Issued when an application has become hidden.

ApplicationPrimaryReceiver This event is issued to indicate that the target is now at the front
of the active application list.

Page 85 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Event Description

ApplicationNotPrimaryReceiver This event is issued to indicate that the target is no longer at the
front of the active application list.

ApplicationTopmost This event is issued to indicate that the target is now the topmost
(i.e. it has the highest Z-index and is not obscured by any other
visible applications, for OITFs where multiple applications are
visible simultaneously.

ApplicationNotTopmost This event is issued to indicate that the target is no longer at the
topmost application. For OITFs where only one application is
visible at a time, this event indicates that the application is no
longer visible to the user.

ApplicationDestroyRequest This event is issued to indicate that the target application is
about to be terminated. It is not issued when an application calls
destroyApplication() method for itself (i.e. to exit itself).

Non-responsive applications SHOULD be forcibly terminated by
the OITF, including the case where listeners for
ApplicationDestroyRequest events do not return promptly. The
determination of when an application is "non-responsive" is
terminal-specific.

If an application does not register a listener for this event and
there is a need for the system to terminate the application, then
the application SHALL be terminated immediately.

ApplicationHibernateRequest This event is issued to indicate that the OITF is about to enter a
hibernate mode.

The OITF SHALL start a short watchdog timer (e.g. 2 seconds).
During this period the application may take any actions (for
example to store the currently viewed channel in case of an
unsuccessful start-up).

Table 12: New DOM events for application support

These events do not bubble and cannot be cancelled. Each of these events has a corresponding DOM 0 event handler
property on the Application object.

7.2.7 Examples (informative)

The examples below illustrate some aspects of the application model.

7.2.7.1 Locating the Application object

The ApplicationManager class provides the getOwnerApplication() method, which returns the document's
owning application node:

var appMgr = oipfObjectFactory.createApplicationmanagerObject();
var self = appMgr.getOwnerApplication(Window.document);

All other application functionality is available from this object.

7.2.7.2 Creating a new application

Creating a new application is a simple matter of creating a new Application object.

Page 86 (356)

 Copyright 2010 © Open IPTV Forum e.V.

// This example assumes that the application/oipfApplicationManager object
// is already instantiated in the DOM tree with the ID
// “applicationmanager”
var appMgr = document.getElementById(“applicationmanager”);
var self = appMgr.getOwnerApplication(Window.document);
var child = self.createApplication(url_of_application, true);

A typical requirement on an application is to only become visible once it has fully loaded. To do this, it can take
advantage of load events. Here is an example from a clock application, which wants to load an image to become the
background of the clock, upon which it can write the text of the clock. This example makes use of the additional window
methods resizeTo(), moveTo() and property ‘screen’, which are only available in application visualization mode 1,
as defined in Section 4.4.6.

<script>
function loaded() {

 var screen = document.defaultView.screen;
 var clock = document.getElementById('clock');
 window.resizeTo(clock.width, clock.height);

 // position in bottom left
 window.moveTo(clock.width, screen.availHeight - clock.height);

 setup_clock(clock.width, clock.height);

 // Assumes that the application/oipfApplicationManager object has the ID
 // “applicationmanager”
 Var appMgr = document.getElementById(“applicationmanager”);
 var self = appMgr.getOwnerApplication(Window.document);
 self.show();
}
</script>

<style> * { margin: 0cm } </style>

<body onload="loaded()">
 <img id="clock" src="clockbackground.png" style="position: absolute; top: 0px;
left=0px">
</body>

7.2.8 Widget APIs

This section defines APIs an author can use to interact with Widgets installed on the OITF. Note that the Widget lifecycle
is managed through the application manager as defined in the previous sections.

7.2.8.1 The WidgetDescriptor class

The WidgetDescriptor class is used to implement the characteristics of a DAE Widget. It extends the Widget
interface defined in Section 11.3 of this specification with the properties below.

7.2.8.1.1 Properties

readonly String localURIlocalURIlocalURIlocalURI

The URI on the local storage where the Widget has been installed. It can be used as an argument to
ApplicationManager.createApplication() to run an installed Widget.

readonly StringCollection defaultIcondefaultIcondefaultIcondefaultIcon

A collection of URI strings for all the available default icons. Default icons are defined in [Widgets-
Packaging]. This collection only contains URIs for the icons currently available in the Widget package.

readonly StringCollection customIconscustomIconscustomIconscustomIcons

A collection of URI strings for all the custom icons of the current Widget. Custom icons are defined in

Page 87 (356)

 Copyright 2010 © Open IPTV Forum e.V.

[Widgets-Packaging].

readonly boolean runningrunningrunningrunning

This flag indicates the running state of the Widget.

7.2.8.1.2 Clarifications

The WidgetDescriptor class is used to identify an installed Widget regardless of whether it is running or not, and so
some clarification on the attribute values defined for the Widget interfaces [Widgets-APIs] is needed. The attributes
height and width are defined in [Widgets-APIs] on the "Widget instance’s viewport". When the Widget is not running
those attributes SHALL take the value defined in the Widget Manifest (if any) otherwise they SHALL be null. When the
Widget is running these attributes SHALL adhere to what's defined in [Widgets-APIs].

7.2.8.2 The WidgetDescriptorCollection class
typedef Collection<WidgetDescriptor> WidgetDescriptorCollection

The WidgetDescriptorCollection class represents a collection of WidgetDescriptor objects.

7.3 Configuration and setting APIs
This section defines the interface to configuration and user settings information. Hardware configuration of the OITF is
managed via an instance of the LocalSystem object. This provides access to hardware information and provides an
entry point to configure the outputs and network interfaces of the OIF. Settings relating to the user interface and
behaviour of the platform software are managed via an instance of the Configuration object.

This section is subject to security control, (see 10.1.4.7) and only applies if <configurationChanges> has value
true

7.3.1 The application/oipfConfiguration embedded ob ject

The OITF SHALL implement the “application/oipfConfiguration” object as defined below. This object
provides an interface to the configuration and user settings facilities within the OITF.

7.3.1.1 Properties

readonly Configuration configurationconfigurationconfigurationconfiguration

Accesses the configuration object that sets defaults and shows system settings.

readonly LocalSystem localSystemlocalSystemlocalSystemlocalSystem

Accesses the object representing the platform hardware.

7.3.2 The Configuration class

The Configuration object allows configuration items within the system to be read and modified. This includes
settings such as audio and subtitle languages, display aspect ratios and other similar settings. Unlike the LocalSystem
object, this is concerned with software- and application-related settings rather than hardware configuration and control.

Page 88 (356)

 Copyright 2010 © Open IPTV Forum e.V.

NOTE: The following properties and methods present in earlier revisions of this specification have been moved to the
application/oipfParentalControlManager embedded object described in Section 7.9.1: isPINEntryLocked,
setParentalControlPIN(), unlockWithParentalControlPIN(), verifyParentalControlPIN() and
setBlockUnrated().

7.3.2.1 Properties

String preferredAudioLanguagepreferredAudioLanguagepreferredAudioLanguagepreferredAudioLanguage

A comma-separated set of languages to be used for audio playback, in order of preference.

Each language SHALL be indicated by its ISO 639 language code.

String preferredSubtitleLanguagepreferredSubtitleLanguagepreferredSubtitleLanguagepreferredSubtitleLanguage

A comma-separated set of languages to be used for subtitle playback, in order of preference.

Each language SHALL be indicated by its ISO 639 language code.

String countryIdcountryIdcountryIdcountryId

An ISO-3166 three character country code identifying the country in which the receiver is deployed.

Integer regionIdregionIdregionIdregionId

An integer indicating the time zone within a country in which the receiver is deployed. A value of 0
SHALL represent the eastern-most time zone in the country, a value of 1 SHALL represent the next
time zone to the west, and so on.

Valid values are in the range 0 – 60.

Integer pvrPolicypvrPolicypvrPolicypvrPolicy

The policy dictates what mechanism the system should use when storage space is exceeded.

Valid values are shown in the table below.

Value Description

0 Indicates a recording management policy where no recordings are to
be deleted.

1 Indicates a recording management policy where only watched
recordings MAY be deleted.

2 Indicates a recording management policy where only recordings
older than the specified threshold (given by the pvrSaveDays and
pvrSaveEpisodes properties) MAY be deleted.

Page 89 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Integer pvrSaveEpisodespvrSaveEpisodespvrSaveEpisodespvrSaveEpisodes

When the pvrPolicy property is set to the value 2, this property indicates the minimum number of
episodes that SHALL be saved for series-link recordings.

Integer pvrSaveDayspvrSaveDayspvrSaveDayspvrSaveDays

When the pvrPolicy property is set to the value 2, this property indicates the minimum save time (in
days) for individual recordings. Only recordings older than the save time MAY be deleted.

Integer pvrStartPaddingpvrStartPaddingpvrStartPaddingpvrStartPadding

The default padding (measured in seconds) to be added at the start of a recording.

Integer pvrEndPaddingpvrEndPaddingpvrEndPaddingpvrEndPadding

The default padding (measured in seconds) to be added at the end of a recording.

Integer preferredTimeShiftModepreferredTimeShiftModepreferredTimeShiftModepreferredTimeShiftMode

The time shift mode indicates the preferred mode of operation for support of timeshift playback in the
video/broadcast object. Valid values are defined in the timeShiftMode property in Section7.13.2.2.
The default value is 0, timeshift is turned off.

7.3.2.2 Methods

String getTextgetTextgetTextgetText(String key)

Description Get the system text string that has been set for the specified key.

Arguments key A key identifying the system text string to be retrieved.

void setTextsetTextsetTextsetText(String key, String value)

Description Set the system text string that has been set for the specified key. System text strings
are used for automatically-generated messages in certain cases, e.g. parental control
messages.

Arguments key The key for the text string to be set. Valid keys are:

Key Description

no_title Text string used as the title for
programmes and channels where no
guide information is available.

Defaults to “No information”

no_synopsis Text string used as the synopsis for
programmes where no guide

Page 90 (356)

 Copyright 2010 © Open IPTV Forum e.V.

information is available.

Defaults to “No further information
available”

blocked_title Text string used as the title for
programmes and channels blocked
by parental control settings (if
metadata hiding is enabled).

Defaults to “BLOCKED”

blocked_synopsis Text string used as the synopsis for
programmes blocked by parental
control settings (if metadata hiding is
enabled).

Defaults to “Program blocked by
user”

manual_recording Text string used to identify a manual
recording.

Defaults to “Manual Recording”

 value The new value for the system text string.

7.3.3 The LocalSystem class

The LocalSystem object allows hardware settings related to the local device to be read and modified.

7.3.3.1 Constants

The following constants are defined as properties of the LocalSystem class:

Name Value Use

OFF 0 The OITF is in the off state and no power is
consumed. This is the case of a power outage or if the
OITF has the ability to be completely turned off.
Scheduled recording is not expected to work.

ON 1 The OITF is in normal working mode with user
interaction. The DAE applications may render any
presentation graphically.

PASSIVE_STANDBY 2 The OITF is in the lowest possible power consumption
state (meeting regulations and certifications). The
OITF may support wake-up from a passive standby in
order, for example, to perform a scheduled recording.

ACTIVE_STANDBY 3 The OITF is in an intermediate power consumption
state. The output to the display shall be inactive. In
this state DAE applications may continue to operate.

Page 91 (356)

 Copyright 2010 © Open IPTV Forum e.V.

PASSIVE_STANDBY_HIBERNATE 4 The OITF is in the lowest possible power consumption
state (meeting regulations and certifications). If the
platform supports hibernate mode then the OITF
stores all applications in volatile memory to allow for
quick startup.

7.3.3.2 Properties

readonly String deviceIDdeviceIDdeviceIDdeviceID

Private OITF Identifier. Unique identifier which SHALL be the same as X-HNI-IGI-OITF-DeviceID in
[OIPF_PROT2]. This property SHALL take the value undefined except when accessed by
applications meeting either of the following criteria:

• The application is signalled in an SD&S service provider discovery record with an application
usage of urn:oipf:cs:ApplicationUsageCS:2009:hni-igi where the SD&S service
provider discovery record was obtained by the OITF through the procedure defined in Section
5.3.1.2 of [PROT].

• The URL of the application was discovered directly through the procedure defined in Section
5.3.1.2 of [PROT].

readonly Boolean systemReadysystemReadysystemReadysystemReady

Indicates whether the system has finished initialising. A value of true indicates that the system is
ready.

readonly String vendorNamevendorNamevendorNamevendorName

String identifying the vendor name of the device.

readonly String modelNamemodelNamemodelNamemodelName

String identifying the model name of the device.

readonly String softwareVersionsoftwareVersionsoftwareVersionsoftwareVersion

String identifying the version number of the platform firmware.

readonly String hardwareVersionhardwareVersionhardwareVersionhardwareVersion

String identifying the version number of the platform hardware.

readonly String serialNumberserialNumberserialNumberserialNumber

Page 92 (356)

 Copyright 2010 © Open IPTV Forum e.V.

String containing the serial number of the platform hardware.

readonly Integer releaseVersionreleaseVersionreleaseVersionreleaseVersion

Release version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “1.0”, this property should be set to 2.

readonly Integer majorVersionmajorVersionmajorVersionmajorVersion

Major version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “2.0”, this property should be set to 2.

readonly Integer minorVersionminorVersionminorVersionminorVersion

Minor version of the OIPF specification implemented by the OITF.

For instance, if the OITF implements release 2 version “2.0”, this property should be set to 0.

readonly String oipfoipfoipfoipfPPPProfilerofilerofilerofile

Profile of the OIPF specification implemented by the OITF. Values of this field are not defined in this
specification.

readonly Boolean pvrEnabledpvrEnabledpvrEnabledpvrEnabled

Flag indicating whether the platform has PVR capability (local PVR).

Note: This property is deprecated in favour of the pvrSupport property.

readonly Boolean ciplusEnabledciplusEnabledciplusEnabledciplusEnabled

Flag indicating whether the platform has CI+ capability.

Boolean standbyStatestandbyStatestandbyStatestandbyState

Get or set the standby state of the receiver. A value of true indicates that the receiver is in standby
mode.

Note - the property is deprecated in favour of the powerState property.

readonly Integer powerStatepowerStatepowerStatepowerState

The powerState property provides the DAE application the ability to determine the current state of the

Page 93 (356)

 Copyright 2010 © Open IPTV Forum e.V.

OITF. The property is limited to the ACTIVE_STANDBY or ON states.

Note this state deprecates the standbyState property.

readonly Integer previousPowerStatepreviousPowerStatepreviousPowerStatepreviousPowerState

The previousPowerState property provides the DAE application the ability to retrieve the previous
state.

readonly Integer timeCurrentPowertimeCurrentPowertimeCurrentPowertimeCurrentPowerStateStateStateState

The time that the OITF entered the current power state. The time is represented in seconds since
midnight (GMT) on 1/1/1970.

function onPowerStateChangeonPowerStateChangeonPowerStateChangeonPowerStateChange(Integer powerState)

The function that is called when the power state has changed. The specified function is called with the
argument powerState:

• Integer powerState – the new power state.

Integer volumevolumevolumevolume

Get or set the overall system volume. Valid values for this property are in the range 0 - 100.

Boolean mutemutemutemute

Get or set the mute status of the default audio output(s). A value of true indicates that the default
output(s) are currently muted.

readonly AVOutputCollection outputsoutputsoutputsoutputs

A collection of AVOutput objects representing the audio and video outputs of the platform.
Applications MAY use these objects to configure and control the available outputs.

readonly NetworkInterfaceCollection networkInterfacesnetworkInterfacesnetworkInterfacesnetworkInterfaces

A collection of NetworkInterface objects representing the available network interfaces.

readonly Integer tvStandardtvStandardtvStandardtvStandard

Get the TV standard(s) for which the system is configured. This enables the user interface to only
display those options relevant to the available TV standard(s).

This property can take one or more of the following values:

Page 94 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Value Description

1 Indicates platform support for the NTSC TV standard.

2 Indicates platform support for the PAL TV standard.

4 Indicates platform support for the SECAM TV standard.

Values are stored as a bitfield.

readonly Integer pvrSupportpvrSupportpvrSupportpvrSupport

Flag indicating the type of PVR support used by the application. This property may take zero or more of
the following values:

Value Description

0 PVR functionality is not supported. This is the default value if <recording> as
specified in Section 9.3.3 has value false.

1 PVR functionality is supported in the OITF. This is the default value if <recording>
as specified in Section 9.3.3 has value true.

Values are stored as a bitfield.

7.3.3.3 Methods

Boolean setScreenSizesetScreenSizesetScreenSizesetScreenSize(Integer width, Integer height)

Description Set the resolution of the graphics plane. If the specified resolution is not supported by the
OITF, this method SHALL return false. Otherwise, this method SHALL return true.

Arguments width The width of the display, in pixels.

height The height of the display, in pixels.

Integer setPvrSupportsetPvrSupportsetPvrSupportsetPvrSupport(Integer state)

Description Set the type of PVR support used by the application. The types of PVR supported by the
receiver MAY not be supported by the application; in this case, the return value indicates
the pvr support that has been set.

Arguments state The type of PVR support desired by the application. More than one type of PVR
functionality MAY be specified, allowing the receiver to automatically select the
appropriate mechanism. Valid values are:

Value Description

Page 95 (356)

 Copyright 2010 © Open IPTV Forum e.V.

0 PVR functionality is not supported. This is the default value if
<recording> as specified in Section 9.3.3 has value false.

1 PVR functionality is supported in the OITF. This is the default
value if <recording> as specified in Section 9.3.3 has value
true.

Values are stored as a bitfield.

Boolean setPowerStatesetPowerStatesetPowerStatesetPowerState(Integer type)

Description The setPowerState() method allows the DAE application to modify the OITF state.

The power state change may be restricted for some values of type, for example OFF and
PASSIVE_STANDBY. A call to setPowerState with a restricted value of type SHALL return
false.

Arguments type The type values that may be specified are defined in Section 7.3.3.1

7.3.3.4 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onPowerStateChange PowerStateChange Bubbles: No

Cancelable: No

Context Info: powerState

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM 2 event handlers SHALL call the addEventListener() method on the LocalSystem object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.3.4 The NetworkInterface class

The NetworkInterface class represents a physical or logical network interface in the receiver.

7.3.4.1 Properties

readonly String ipAddressipAddressipAddressipAddress

The IP address of the network interface, in dotted-quad notation for IPv4 or colon-hexadecimal notation
for IPv6.

Page 96 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String macAddressmacAddressmacAddressmacAddress

The colon-separated MAC address of the network interface.

readonly Boolean connectedconnectedconnectedconnected

Flag indicating whether the network interface is currently connected.

Boolean enabledenabledenabledenabled

Flag indicating whether the network interface is enabled. Setting this property SHALL enable or
disable the network interface.

7.3.5 The AVOutput class

The AVOutput class represents an audio or video output on the local platform.

7.3.5.1 Properties

readonly String namenamenamename

The name of the output. Each output SHALL have a name that is unique on the local system. At least
one of the outputs SHALL have the name "all" and SHALL represent all available outputs on the
platform.

readonly String typetypetypetype

The type of the output. Valid values are “audio”, “video”, or “both”.

Boolean enabledenabledenabledenabled

Flag indicating whether the output is enabled. Setting this property SHALL enable or disable the
output.

Boolean subtitleEnabledsubtitleEnabledsubtitleEnabledsubtitleEnabled

Flag indicating whether the subtitles are enabled. The language of the displayed subtitles is
determined by a combination of the value of the Configuration.preferredSubtitleLanguage
property (see Section 7.3.2.1) and the subtitles available in the stream. For audio outputs, setting this
property will have no effect.

String videoModevideoModevideoModevideoMode

Read or set the video format conversion mode, for which hardware support MAY be available on the

Page 97 (356)

 Copyright 2010 © Open IPTV Forum e.V.

device, used when displaying a 4:3 signal on a 16:9 display. Valid values are:

• normal

• stretch

• zoom

The actual effect on the display, for example how bars are introduced when stretching an input video,
depends on the value of this property, the aspect ratio of the display device and the aspect ratio of the
input video (represented by the aspectRatio property of the appropriate instance of the
AVVideoComponent class).

An OITF that does not support its own display (e.g. STB) may also signal over the interface (ex. HDMI
and SCART) to the TV set which may also have effect on the actual display. This specification remains
silent on the actual effect.

The DAE application graphical layer is unaffected by the videoMode.

For audio-only outputs, setting this property SHALL have no effect.

String digitalAudioModedigitalAudioModedigitalAudioModedigitalAudioMode

Set the output mode for digital audio outputs for which hardware support MAY be available on the
device. Valid values are shown below.

Value Behaviour

ac3 Output AC-3 audio.

uncompressed Output uncompressed PCM audio.

For video-only outputs, setting this property SHALL have no effect.

String audioRangeaudioRangeaudioRangeaudioRange

Set the range for digital audio outputs for which hardware support MAY be available on the device.
Valid values are shown below

Value Behaviour

normal Use the normal audio range.

narrow Use a narrow audio range.

wide Use a wide audio range.

For video-only outputs, setting this property SHALL have no effect.

String hdVideoFormathdVideoFormathdVideoFormathdVideoFormat

Set the video format for HD video outputs for which hardware support MAY be available on the device.

Page 98 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Valid values are:

• 480i

• 480p

• 576i

• 576p

• 720p

• 1080i

• 1080p

For audio-only or standard-definition outputs, setting this property SHALL have no effect.

String tvAspectRatiotvAspectRatiotvAspectRatiotvAspectRatio

Indicates the display aspect ratio of the display device connected to this output for which hardware
support MAY be available on the device. Valid values are:

• 4:3

• 16:9

Other values may be indicated but are not listed.

For audio-only outputs, setting this property SHALL have no effect.

readonly StringCollection supportedVideoModessupportedVideoModessupportedVideoModessupportedVideoModes

Read the video format conversion modes that may be used. See the definition of the videoModes
property for valid values.

For audio outputs, this property will have the value null.

readonly StringCollection supportedDigitalAudioModessupportedDigitalAudioModessupportedDigitalAudioModessupportedDigitalAudioModes

Read the supported output modes for digital audio outputs. See the definition of the
digitalAudioMode property for valid values.

For video outputs, this property will have the value null.

readonly StringCollection supportedAudioRangessupportedAudioRangessupportedAudioRangessupportedAudioRanges

Read the supported ranges for digital audio outputs. See the definition of the audioRange property for
valid values.

For video outputs, this property will have the value null.

Page 99 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly StringCollection supportedHdVideoFormatssupportedHdVideoFormatssupportedHdVideoFormatssupportedHdVideoFormats

Read the supported HD video formats. See the definition of the hdVideoFormat property for valid
values.

For audio outputs, this property will have the value null.

readonly StringCollection supportesupportesupportesupportedAspectRatiosdAspectRatiosdAspectRatiosdAspectRatios

Read the supported TV aspect ratios. See the definition of the tvAspectRatio property for valid
values.

For audio outputs, this property will have the value null.

7.3.6 The NetworkInterfaceCollection class

typedef Collection<NetworkInterface> NetworkInterfaceCollection

The NetworkInterfaceCollection class represents a collection of NetworkInterface objects. See annex K for
the definition of the collection template.

7.3.7 The AVOutputCollection class

typedef Collection<AVOutput> AVOutputCollection

The AVOutputCollection class represents a collection of AVOutput objects. See annex K for the definition of the
collection template.

7.4 Content download APIs
This section defines the content-on-demand download interfaces for both DRM-protected and non-DRM protected
content.

An OITF and a DAE application which have indicated support for downloading content by providing value “true” for
element <download> in their capability profile as specified in Section 9.3.4 SHALL adhere to the following
requirements.

NOTE: Annex D clarifies the purpose and the use of these interfaces in more detail.

7.4.1 The application/oipfDownloadTrigger embedded object

An OITF SHALL support a non-visual embedded object of type application/oipfDownloadTrigger, with the
following Javascript API to enable passing a content-access descriptor to an underlying download manager using
Javascript.

The functionality as described in this section is subject to the security model of Section 10.

7.4.1.1 Methods

String registerDownloadregisterDownloadregisterDownloadregisterDownload(String contentAccessDownloadDescriptor, Date downloadStart)

Description Send contentAccessDownloadDescriptor to underlying download manager as a
String formatted according to the Content Access Download Descriptor XML Schema as

Page 100 (356)

 Copyright 2010 © Open IPTV Forum e.V.

specified in Annex E.

Returns a String value representing a unique identifier to identify the download, if the
contentAccessDownloadDescriptor is valid and is accepted for triggering a download.
If the OITF supports the application/oipfDownloadManager as specified in Section
7.4.3, this SHALL be value of the “id” attribute of the associated the Download object.

Note that if the Content Access Download Descriptor contains multiple content items to be
downloaded, the associated Download objects for each of these content items SHALL
have the same value for the “id” value. The associated Download objects can be retrieved
through the method getDownloads() as defined in Section 7.4.3.3.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the contentAccessDownloadDescriptor is not
accepted for triggering a download.

Arguments contentAccessDownloadDescriptor String formatted according to the Content
Access Download Descriptor XML Schema as
specified in Annex E.

downloadStart Optional argument indicating the time at which
the download should be started. If the argument
is not included, or takes a value of null then
the download should start as soon as possible.

String registerDownloadURLregisterDownloadURLregisterDownloadURLregisterDownloadURL(String URL, String contentType, Date downloadStart)

Description This method triggers the OITF to initiate a download of the content pointed to by the URL
and the given content type.

The contentType attribute SHALL reflect the expected type of content returned by the
content server when connecting to the URL. The contentType can be used to evaluate if
the content type is part of the list of accepted content types of the OITF. For example, if the
OITF does not support content type “video/MP2T”, then the registerDownloadURL
method could return undefined to indicate this to the application in advance of the
download.

If contentType has value “application/vnd.oipf.ContentAccessDownload+xml”,
the method SHALL return a download identifier, after which the OITF SHALL immediately
fetch the Content Access Download Descriptor, after which the same SHALL happen as if
registerDownload() as defined in Section 4.6.3.1 with the given Content Access
Download Descriptor as argument was called. The downloadStart argument only applies to
the individual Download objects described by the Content Access Download Descriptor and
SHALL NOT apply to the retrieval of the Content Access Download Descriptor itself.

Note that if the Content Access Download Descriptor contains multiple content items to be
downloaded, the associated Download objects for each of these content items SHALL
have the same value for the “id” value. The associated Download objects can be retrieved
through method getDownloads() as defined in Section 7.4.3.3.

Returns a String value representing a unique identifier to identify the download, if the
given arguments are acceptable by the OITF to trigger a download. If the OITF supports
the application/oipfDownloadManager as specified in Section 7.4.3, this SHALL be
the value of the “id” attribute of the associated Download object(s).

The OITF SHALL guarantee that download identifiers are unique in relation to recording

Page 101 (356)

 Copyright 2010 © Open IPTV Forum e.V.

identifiers and CODAsset identifiers.

The method returns undefined if the given arguments are not acceptable by the OITF to
trigger a download.

Arguments URL The URL from which the content can be fetched.

contentType The type of content referred to by the URL attribute. The
contentType can be used to evaluate if the content type is part of
the list of supported content types of the OITF.

downloadStart Optional argument indicating the time at which the download should
be started. If the argument is not included, or takes a value of null
then the download should start as soon as possible.

Integer checkDownloadPossiblecheckDownloadPossiblecheckDownloadPossiblecheckDownloadPossible(Integer sizeInBytes)

Description Checks whether a download of a given sizeInBytes would be possible at this moment in
time.

Possible return values are:

Value Semantics

0 Successful, i.e. the download could be successfully completed if it would be
started at this moment in time.

1 Insufficient Storage, i.e. the download could be started, but is unlikely to
complete successfully, since insufficient storage capacity is available to fully
store the content to be downloaded.

2 Storage not available, i.e. the download would fail, since the storage is
currently unavailable, e.g. in case of removable storage.

Arguments sizeInBytes Integer value with the given size of the download in bytes.

7.4.2 Extensions to application/oipfDownloadTrigger

If an OITF has indicated support for both BCG metadata (i.e. by giving element <clientMetadata> value “true”
and a type attribute with value “bcg”), and the download management APIs defined in Section 7.4.3 (i.e. by giving
attribute manageDownloads of the <download> element a value unequal to “none”) in the client capability
description, then the following additional method SHALL be supported by the
application/oipfDownloadTrigger object defined in Section 7.4.1

The functionality as described in this section is subject to the security model of Section 10.

String registerDownloadFromCRIDregisterDownloadFromCRIDregisterDownloadFromCRIDregisterDownloadFromCRID(String CRID, String IMI, Date downloadStart)

Description Send (CRID,IMI) to underlying download manager. Returns a String value representing
a unique identifier to identify the download if the (CRID,IMI) tuple is valid and is
accepted for triggering a download. If the OITF supports the
application/oipfDownloadManager as specified in Section 7.4.3, this SHALL be the
value of the “id” attribute of the associated Download object(s), which corresponds to the
CRID in this case.

Page 102 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The OITF SHALL guarantee that download identifiers are unique in relation to recording
identifiers and CODAsset identifiers.

The method returns undefined if the given (CRID, IMI) tuple is not accepted for
triggering a download.

The values of the name, description, parentalRating and DRMControl properties
SHALL be based on the metadata provided for the item matching that CRID.

Arguments CRID The TV-Anytime Content reference ID that points to the general
information about the item to download that does not change
regardless of how the content is published or broadcast

IMI The TV-Anytime Instance Metadata ID that points to the specific
information related to the item to download, such as content location,
usage rules (pay-per-view, etc.) and delivery parameters (e.g. video
format).

downloadStart Optional argument indicating the time at which the download should
be started. If the argument is not included, or takes a value of null
then the download should start as soon as possible.

7.4.3 The application/oipfDownloadManager embedded object

In a managed network, privileged applications may need access to the download management functionality in a CoD
system. This access may be required to implement a UI to the download manager, to queue a download or to display the
progress of a specific download. OITFs SHOULD support an “application/oipfDownloadManager” object with
the following interface.

Clients supporting the download management APIs as specified in this section SHALL indicate this by adding the
attribute manageDownloads to the <download> element with a value unequal to ”none” in the client capability
description as defined in Section 9.3.4.

The functionality as described in this section is subject to the security model of Section 10.

7.4.3.1 State diagram for the application/oipfDownl oadManager object

The following state machine provides an overview of the state changes that may occur in the download manager. The
states reflect the changes signalled to applications via the onDownloadStateChange event handler.

Page 103 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Download in progress

Queued download

Download paused Download stalled

Failed download

Successful download

start download

pause() temporary
failure

pause()

registerDownload()

remove()

recovery

remove()

remove()

remove()

remove()

resume()

Successful
download

updateRegisteredDownload()
updateRegisteredDownload()

updateRegisteredDownload()

updateRegisteredDownload()

Figure 14: State diagram for embedded application/oipfDownloadManagerapplication/oipfDownloadManagerapplication/oipfDownloadManagerapplication/oipfDownloadManager objects

7.4.3.2 Properties

function onDownloadStateChangeonDownloadStateChangeonDownloadStateChangeonDownloadStateChange(Download item, Integer state, Integer reason)

The function that is called when the status of a download has changed. The specified function is called
with three arguments item, state and reason, which are defined as follows:

• Download item – the Download object whose state has changed.

• Integer state – the new state of the download. Valid values are given in Section 7.4.4.1.

• Integer reason. Extended reason code. This is only valid if the value of the state argument is
8. Valid values are given in Section 7.4.4.2. If no error has occurred, this argument SHALL take
the value undefined.

readonly DiscInfo discInfodiscInfodiscInfodiscInfo

Get information about the status of the local storage device. The DiscInfo class is defined in Section
7.16.4.

Page 104 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.4.3.3 Methods

Boolean pausepausepausepause(Download download)

Description Pause an in-progress, queued or stalled download and return true. For in-progress
downloads, more data SHALL NOT be downloaded until the download is resumed.
The HTTP request and TCP socket are interrupted and closed.

For completed or failed downloads, this operation SHALL return false.

Arguments download The download to be paused.

Boolean resumeresumeresumeresume(Download download)

Description Resume a paused download. If the download is not paused, this operation SHALL
return false.

Arguments download The download to be resumed.

Boolean removeremoveremoveremove(Download download)

Description Remove the download and any data and media content associated with it and return
true. Return false if the download attribute does not refer to a valid download.

As a side effect of this method, all properties on download SHALL be set to
undefined. Any method calls subsequently performed by an application which pass
download as an argument SHALL return false.

If an A/V Control object is currently playing the specified Download object, the A/V
Control object SHALL transition to the error state.

Arguments download The download to be deleted.

DownloadCollection getDownloadsgetDownloadsgetDownloadsgetDownloads(String id)

Description Returns a collection of downloads, for which the value of the Download.id property
corresponds to the given id parameter. The downloads returned in the collection
SHALL be filtered according to the value of the manageDownloads attribute of the
<download> element in the OITF’s capability description (i.e. from the same
application, same domain or from all applications).

For downloads initiated from registerDownloadURL() with a contentType value
“application/vnd.oipf.ContentAccessDownload+xml” SHALL return null until
the Content Access Download Descriptor has been retrieved and parsed.

If the value of id is null, it returns all downloads for the scope indicated by the
manageDownloads attribute.

Arguments id Optional argument identifying the downloads to be retrieved. If
present and not null, this is an identifier corresponding to the “id”
attribute of zero or more Download objects. If the value of id is null,
or the argument is not included, all downloads for the scope indicated

Page 105 (356)

 Copyright 2010 © Open IPTV Forum e.V.

by the manageDownloads attribute in the capability description are
returned.

DownloadCollection createFilteredListcreateFilteredListcreateFilteredListcreateFilteredList(Boolean currentDomain, Integer states)

Description Create a filtered list of downloads. Returns a subset of downloads that are managed
by the receiver.

The currentDomain flag indicates whether downloads from FQDNs other than the
current page are included in the returned collection. This flag MAY be set to one of
three values:

Value Meaning

true The download is added if and only if it was initiated from the
FQDN of the calling document.

If the application has the permission
permission_downloadmanager (see Section 10.1.5), only
downloads initiated by the calling application shall be added.

false The download is added if and only if it was not initiated from the
FQDN of the calling document.

If the application does not have the permission
permission_downloadmanager_all (see Section 10.1.5), the OITF
SHALL return an empty collection.

undefined The download is added regardless of the domain that the
download was initiated from.

If the application has the permission
permission_downloadmanager (see Section 10.1.5), only
downloads initiated by the calling application shall be added.

If the application has the permission
permission_downloadmanager_samedomain (see Section
10.1.5), only downloads initiated by applications from the same
FQDN shall be added.

The states flag indicates which state(s) of downloads that should be included in the
list. The value of this flag is the arithmetic sum of one or more possible values of the
state property of the Download object; only downloads whose state matches one of
the values included in this sum are included in the returned collection.

Arguments currentDomain Flag indicating whether downloads from other domains SHALL
be added to the list.

states Indicates that states of downloads that should be included in the
returned list.

Boolean updateRegistereupdateRegistereupdateRegistereupdateRegisteredDownloaddDownloaddDownloaddDownload(Download download, string newURL)

Page 106 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description The method updateRegisteredDownload() provides a way to update the URL to
be used for a download. The OITF SHALL use the new URL for any future retrieval.

If the download is already in progress or paused (indicated by a state property value
of 4), it SHALL be stopped. The download SHALL continue from the last byte received
during the previous download.

If the state property of the download argument has the value
Download.DOWNLOAD_FAILED or Download.DOWNLOAD_STALLED then the OITF
SHALL resume the download from the last byte received during the previous
download but using the new URL.

If the state property of the download argument has the value
Download.DOWNLOAD_NOT_STARTED no further action is taken until the download is
started or resumed.

If the state property of the download argument has the value
Download.DOWNLOAD_COMPLETED then this method SHALL return false. Otherwise
it SHALL return true.

Arguments download The download object to be updated.

newURL The new URL from which the content can be retrieved.

7.4.3.4 Events

For the intrinsic event “onDownloadStateChange”, a corresponding DOM level 2 event SHALL be generated, in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDownloadStateChange DownloadStateChange Bubbles: No

Cancelable: No

Context Info: item, state,
reason

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DownloadStateChange event during the bubbling or the capturing phase.
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfDownloadManager object. The third parameter of addEventListener, i.e. “useCapture”,
will be ignored.

7.4.4 The Download class

A Download object being made available by the application/oipfDownloadManager embedded object
represents a content item that has either been downloaded from a remote server or is in the process of being downloaded.

If the ID of a download is a TV-Anytime CRID, then the values of the name, description and parentalRating
properties SHALL be set by the OITF based on the metadata provided for the item matching that CRID.

Page 107 (356)

 Copyright 2010 © Open IPTV Forum e.V.

In order to preserve backwards compatibility with already existing DAE content the ECMAScript toString() method
MUST return the Download.id for Download objects.

7.4.4.1 Constants

The following constants are defined as properties of the Download class:

Name Value Use

DOWNLOAD_COMPLETED 1 The download has completed.

DOWNLOAD_IN_PROGRESS 2 The download is in progress.

DOWNLOAD_PAUSED 4 The download has been paused (either by an application or
automatically by the platform)

DOWNLOAD_FAILED 8 The download has failed.

DOWNLOAD_NOT_STARTED 16 The download is queued but has not yet started.

DOWNLOAD_STALLED 32 The download has stalled due to a transient failure and the
Download Manager is attempting to recuperate and re-
establish the download.

7.4.4.2 Properties

readonly Integer totalSizetotalSizetotalSizetotalSize

The total size (in bytes) of the download.

readonly Integer statestatestatestate

The current state of the download. When this changes, a DownloadStateChange event SHALL be
generated. Valid values are given in Section 7.4.4.1 above.

readonly Integer reasonreasonreasonreason

The reason property is only valid if the value of the state property is DOWNLOAD_FAILED.

Reason Semantics

0 The local storage device is full.

1 The item cannot be downloaded (e.g. because it has not been purchased).

2 The item is no longer available for download.

3 The item is invalid due to bad checksum or length.

4 Other reason.

If no error has occurred, this argument SHALL take the value undefined.-

Page 108 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Integer amountDownloadedamountDownloadedamountDownloadedamountDownloaded

The amount of data that has been downloaded returned in bytes, or zero if no data has been
downloaded.

readonly Integer currentBitratecurrentBitratecurrentBitratecurrentBitrate

The bitrate (in bits per second) at which the download is currently transferred. This value is non-zero
only when the Download object is in the DOWNLOAD_IN_PROGRESS state. If this is unknown the value of
this property SHALL be undefined.

String namenamenamename

The name of the download or undefined if this information is not present. In case the download is
triggered through a Content Access Download Descriptor, this corresponds to the value for the
<Title> element in the Content Access Download Descriptor.

If the Content Access Download Descriptor is not specified the property may be set by the origin site.
Note that the property may only be set by the site that initiated the download. The DAE application may
store data related to the Download. The OITF SHALL support a minimum of 200 bytes for the property.
If DAE application attempts to store a string larger than the available size the OITF SHALL set the
property to NULL. The maximum length of the property value is implementation dependent.

readonly String idididid

The ID of the download as determined by the OITF.

readonly String contentURLcontentURLcontentURLcontentURL

The URL the content is being fetched from, or undefined if this information is not available.

String descriptiondescriptiondescriptiondescription

A description of the download or undefined if this information is not present. In case the download is
triggered through a Content Access Download Descriptor, this corresponds to the value for the
<Synopsis> element in the Content Access Download Descriptor, or undefined if this element is not
present.

If the Content Access Download Descriptor is not specified the property may be set by the origin site.
Note that the property may only be set by the site that initiated the download. The DAE application may
store data related to the Download. The OITF SHALL support a minimum of 2000 bytes for the
property. If DAE application attempts to store a string larger than the available size the OITF SHALL
set the property to NULL. The maximum length of the property value is implementation dependent.

readonly ParentalRatingCollection parentalRatingparentalRatingparentalRatingparentalRatingssss

The parental rating collection related to the downloaded content item, or undefined if this information

Page 109 (356)

 Copyright 2010 © Open IPTV Forum e.V.

is not present. In case the download is triggered through a Content Access Download Descriptor, this
corresponds to the value for the <ParentalRating> element in the Content Access Download
Descriptor, or undefined if this element is not present

readonly DRMControlInfoCollection drmControldrmControldrmControldrmControl

The DRMControlInformation object corresponding to the DRM Control information of the
downloaded content item, or undefined if this information is not present. In case the download is
triggered through a Content Access Download Descriptor, this corresponds to the value for the
<DRMControlInformation> element associated with the same DRMSystemID of the selected
<ContentURL>, or is undefined if this information is not present.

The related DRMControlInformation object is defined in Section 7.4.6.

readonly Date startTimestartTimestartTimestartTime

The time that the download is scheduled to start (in the case of scheduled downloads) or undefined if
no start time was set.

readonly Integer timeElapsedtimeElapsedtimeElapsedtimeElapsed

The time (in seconds) that has elapsed since the download of the item was started. The elapsed time
SHALL be based on the time spent in the in-progress and stalled download states. This SHALL NOT
include any time the item spent queued for download.

readonly Integer timeRemainingtimeRemainingtimeRemainingtimeRemaining

The estimated time remaining (in seconds) for the download to complete. The estimated time SHALL
be based on the time spent in the in-progress and stalled download states. The estimate SHALL NOT
includes any time the item spent queued for download or paused. If an estimate cannot be calculated,
the value of this property SHALL be undefined.

readonly String transferTypetransferTypetransferTypetransferType

In case the download was triggered through a Content Access Download Descriptor, this is the value of
property TransferType of the selected <ContentURL>. In the case where the download was not
triggered through a content access descriptor document, the OITF is responsible for returning either
the value “playable_download” or “full_download”, based on criteria defined by the OITF.

readonly String originSiteoriginSiteoriginSiteoriginSite

In the case where the download was triggered through a Content Access Download Descriptor, this is
the value of element <OriginSite>. In case the download was not triggered through a content access
descriptor document, this is the FQDN of the site that initiated the download.

readonly String originSiteNameoriginSiteNameoriginSiteNameoriginSiteName

In case the download is triggered through a Content Access Download Descriptor, this is the value of

Page 110 (356)

 Copyright 2010 © Open IPTV Forum e.V.

element <OriginSiteName>, or undefined if this information is not present. In case the download is
not triggered through a content access descriptor document, this property is undefined.

String contentIDcontentIDcontentIDcontentID

A unique identification of the content item relative to originSite. In case the download is triggered
through a Content Access Download Descriptor, and a <ContentID> element has been defined for the
given content item, this is the value of element <ContentID>. If the download is started using
registerDownloadFromCRID(), this is the TV Anytime CRID. This property shall take the value
undefined if no content ID is available.

If the Content Access Download Descriptor is not specified the property may be set by the originSite.
Note that the property may only be set by the site that initiated the download. The DAE application may
store data related to the Download. The OITF SHALL support a minimum of 2000 bytes for the
property. If DAE application attempts to store a string larger than the available size the OITF SHALL
set the property to NULL. The maximum length of the property value is implementation dependent.

readonly String iconURLiconURLiconURLiconURL

The URL of an image that provides a visual representation of the item that is being downloaded. In the
case where the download was triggered a Content Access Download Descriptor, this is the value of
element <IconURL>, or undefined if this element is not present. In the case where the download was
not triggered through a content access descriptor document, this property is undefined.

7.4.5 The DownloadCollection class

typedef Collection<Download> DownloadCollection

The DownloadCollection class represents a collection of Download objects. See annex K for the definition of the
collection template.

7.4.6 The DRMControlInformation class

A DRMControlInformation object represents the DRM Control information structure defined in §3.3.2 of
[OIPF_META2].

7.4.6.1 Properties

readonly String drmTypedrmTypedrmTypedrmType

URN consisting of the DRM system's DVB CASystemID value (expressed as a decimal integer),
prefixed with the string “urn:dvb:casystemid:”. For example, the value of this property for Marlin is
“urn:dvb:casystemid:19188”.

readonly String rightsIssuerURLrightsIssuerURLrightsIssuerURLrightsIssuerURL

A URL used by OITF to obtain rights for this content item.

readonly String silentRightsURLsilentRightsURLsilentRightsURLsilentRightsURL

Page 111 (356)

 Copyright 2010 © Open IPTV Forum e.V.

A URL used by OITF to obtain rights silently, e.g. a Marlin Action Token.

readonly String drmContentIDdrmContentIDdrmContentIDdrmContentID

DRM Content ID for CoD or scheduled content item, e.g. the Marlin Content ID.

readonly String previewRightsURLpreviewRightsURLpreviewRightsURLpreviewRightsURL

A URL used by OITF to obtain rights silently for preview of this content item, e.g. a Marlin Action
Token.

readonly String drmPrivateDatadrmPrivateDatadrmPrivateDatadrmPrivateData

Private data for the DRM scheme indicated in drmType to be applied for this content item. Private DRM
Data is actually structured as an XML document whose schema is specific to the considered DRM
system. One example is Marlin DRM private data schema defined in [OIPF_CSP2].

readonly Boolean doNotRecorddoNotRecorddoNotRecorddoNotRecord

A flag indicating whether this content item is recordable or not.

readonly Boolean doNotTimeShiftdoNotTimeShiftdoNotTimeShiftdoNotTimeShift

A flag indicating if this content item is allowed for time shift play back.

7.4.7 The DRMControlInfoCollection class

typedef Collection<DRMControlInfo> DRMControlInfoCollection

The DRMControlInfoCollection class represents a collection of DRMControlInfo objects. See annex K for the
definition of the collection template.

7.5 Content On Demand Metadata APIs
This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a type attribute
with value “bcg” in the capability description and MAY apply for OITFs that have indicated <clientMetadata> with
value “true” and a type attribute with value “dvb-si”

7.5.1 The application/oipfCodManager embedded objec t

OITFs that have indicated <clientMetadata> with value “true” and a type attribute with value “bcg” SHALL
implement an “application/oipfCodManager” embedded object with the following interface.

Content is organised into catalogues, where each catalogue contains a hierarchy of folders that are used to organise
individual content items. The structure of the catalogue SHALL be determined by the server managing that catalogue and
SHALL be reflected in the structure of the metadata passed to the OITF.

The three types of content in a CoD catalogue are:

Page 112 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Assets, represented by the CODAsset class. A CODAsset is a user-level description of a piece of CoD content,
and so it is more concerned with information such as the price, rental period, description and parental rating
rather than detailed technical information about the asset such as encoding format. A CoD asset MAY represent
a single movie, or a bundle of movies offered for a single price.

• Folders, represented by the CODFolder class.

• Services, represented by the CODService class. CODService objects are a specific type of container
representing subscription VoD (SVOD) services, where users purchase a group of assets which may change over
time rather than a single movie or TV show.

The CODAsset, CODFolder and CODService classes define a type property that allows these classes to be
distinguished by applications. For each class, this property SHALL take the value defined below:

Class Value

CODFolder 0

CODAsset 1

CODService 2

This specification defines the mapping between the CoD API and BCG metadata. Mappings between the CoD API and
other CoD metadata sources are not specified in this document.

7.5.1.1 Properties

readonly ContentCatalogueCollection cataloguescataloguescataloguescatalogues

A collection of all available CoD catalogues, as listed in an SD&S BCG Discovery record.

function onContentCatalogueEventonContentCatalogueEventonContentCatalogueEventonContentCatalogueEvent(Integer action)

This function is the DOM 0 event handler for events relating to changes in a content catalogue
collection. The specified function is called with the argument action:

• Integer action - The type of event. For current versions of the specification, this property
SHALL always have the value 0 to indicate a change in the list of available catalogues.

function onContentActiononContentActiononContentActiononContentAction(Integer action, Integer result, Object item,
ContentCatalogue catalogue)

This function is the DOM 0 event handler for events relating to actions carried out on an item in a
content catalogue. The specified function is called with the following arguments:

• Integer action - The type of action that the event refers to. Valid values are:

Value Description

0 An operation to browse a content collection (e.g. getting a page from the collection).

Page 113 (356)

 Copyright 2010 © Open IPTV Forum e.V.

1 Indicates that more information is available about this item (e.g. that more information has
been retrieved from the server).

• Integer result - The result of the action. Valid values are:

Value Description

0 The operation succeeded.

1 The item no longer exists in the catalogue.

2 The server has not responded in the timeout period.

3 Communication with the server has been interrupted.

• Object item - The item in the catalogue that the event refers to.

• ContentCatalogue catalogue - The parent catalogue of the affected object.

7.5.1.2 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onContentCatalogueEvent ContentCatalogueEvent Bubbles: No

Cancelable: No

Context Info: action

onContentAction ContentAction Bubbles: No

Cancelable: No

Context Info: action,
result, item, catalogue

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving the events listed above during the bubbling or the capturing phase. Applications that
use DOM 2 event handlers SHALL call the addEventListener() method on the LocalSystem object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.5.2 The CatalogueCollection class

Page 114 (356)

 Copyright 2010 © Open IPTV Forum e.V.

typedef Collection<ContentCatalogue> CatalogueCollection

The CatalogueCollection class represents a collection of ContentCatalogue objects. See annex K for the
definition of the collection template.

7.5.3 The ContentCatalogue class

A ContentCatalogue represents a content catalogue for a content on demand service.

To receive events relating to operations on items in a catalogue, applications MAY add listeners for “ContentAction”
events to the application/oipfCodManager object.

7.5.3.1 Properties

readonly String namenamenamename

The name of the content catalogue that should be displayed to the user. The value of this property is
given by the Name element in the catalogue's BCG discovery record.

readonly CODFolder rootFolderrootFolderrootFolderrootFolder

The root folder of the content catalogue.

7.5.3.2 Methods

CODFolder getPurchaseHistorygetPurchaseHistorygetPurchaseHistorygetPurchaseHistory()

Description Get the list of items that have been purchased from the catalogue by the current user,
including currently active rentals.

Items in this list will be derived from children of the BCG UserActionList element
which have an ActionType of buy. If the ActionList element is not present, this
method SHALL return null.

7.5.4 The CODFolder class

CODFolder represents a folder in a CoD catalogue. Folders may contain other folders, and an asset may be present in
more than one folder.

Because a content list may contain a large number of items, the contents of the list are made available on demand using a
paging model. Applications MAY request the contents of the list in ‘pages’ of an arbitrary size. The data SHALL be
fetched from the appropriate source, and application SHALL be notified when the data is available.

Each folder is described by a GroupInformation element in the BCG Group Information Table.

7.5.4.1 Properties

Page 115 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Integer typetypetypetype

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This SHALL always have the value 0 for folders.

readonly String uriuriuriuri

The URI used to refer to the folder. The value of this property is given by the GroupId attribute of the
GroupInformation element representing this folder.

readonly String namenamenamename

The name of the folder. The value of this property is given by the Title element that is a descendant
of the GroupInformation element representing this folder.

readonly String descriptiondescriptiondescriptiondescription

A description of the folder, for display to an end user. The value of this property is given by the
Synopsis element that is a descendant of the GroupInformation element representing this folder.

readonly String thumbnailUrithumbnailUrithumbnailUrithumbnailUri

The URI of an image associated with this folder.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly Integer lengthlengthlengthlength

The number of items in the current page. If getPage() has not yet been called, the value of this
property SHALL be undefined.

readonly Integer currentPagecurrentPagecurrentPagecurrentPage

The page number of the currently-available results, as specified in the last call to getPage(). If
getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer pageSizepageSizepageSizepageSize

Page 116 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The number of items that were requested from the content catalogue in a call to getPage(). This
MAY be different form the number of items that are available (e.g. the last page in the collection).

If getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSizetotalSizetotalSizetotalSize

The total number of items in the folder. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOfItems attribute of the GroupInformation
element representing this folder.

7.5.4.2 Methods

Object itemitemitemitem(Integer index)

Description Return the item at position index in the current page, or undefined if no item is
present at that position. This function SHALL only return objects that are instances of
CODAsset, CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation
instead of calling this method directly.

Arguments index The index into the collection.

void getPagegetPagegetPagegetPage(Integer page, Integer pageSize)

Description Retrieve one page of the folder’s contents. The application SHALL be notified by an
event targeted at the folder's parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

Arguments page The number of the page for which data should be retrieved, indexed
from zero.

pageSize The size of the page.

void abortabortabortabort()

Description Abort the current request for a new page of folder contents. Any results for this folder
SHALL be removed (i.e. the value of the length property will be 0 and any calls to
the item() method SHALL return undefined),

7.5.5 The CODAsset class

The CODAsset represents a piece of CoD content that can be purchased and played. A CODAsset object MAY refer to
a bundle of content items that are purchased together but which can only be played individually.

Page 117 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Some fields of a CODAsset object MAY not be populated until an application requests them; in this case the data MAY
be fetched asynchronously from a server. Fields where the data has not been fetched from the server SHALL have a
value of undefined. Fields for which data is not available on the server SHALL have a value of null.

7.5.5.1 Properties

readonly Integer typetypetypetype

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This property SHALL always have the value 1 for CoD assets.

readonly String uriuriuriuri

The CRID of the asset. The value of this property is given by the programId attribute of the BCG
ProgramInformation element that describes the asset.

readonly String namenamenamename

The title of the asset that will be displayed to the user. The value of this property is given by the BCG
Title element that is a child of the asset’s BasicDescription element.

readonly String descriptiondescriptiondescriptiondescription

A description of the asset, for display to an end user. The value of this property is given by the BCG
Synopsis element that is a child of the asset’s BasicDescription element.

readonly StringCollection genresgenresgenresgenres

A collection of genres that describe this asset. Genres are represented by the values of any Name
elements that are children of Genre elements in the asset’s description.

readonly ParentalRating parentalRatingparentalRatingparentalRatingparentalRating

The parental rating value of the asset. This information will be read from the ParentalGuidance
element of an asset’s description, if present.

readonly Boolean blockedblockedblockedblocked

Flag indicating whether the asset is blocked due to parental control settings (i.e. whether its parental
rating value exceeds the current system threshold).

readonly Boolean lockedlockedlockedlocked

Flag indicating whether the current state of the parental control system prevents the asset from being

Page 118 (356)

 Copyright 2010 © Open IPTV Forum e.V.

viewed (e.g. a correct parental control PIN has not been entered to allow the item to be viewed).

readonly String thumbnailUrithumbnailUrithumbnailUrithumbnailUri

The URI of an image associated with this asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Promotional Still Image, the value of this property is given by the MediaURI element that is a
descendant of that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly String pricepricepriceprice

The price of the asset, in a form that can be displayed to the user. The value of this property is the
concatenation of the value of the Price element that is a child of a PurchaseItem element in the
asset’s description and the value of the Price element’s currency attribute.

For example, a Price element of

<Price currency="JPY">500</Price>

would give the value 500 JPY for this field. Implementations MAY replace the currency code with the
appropriate currency symbol (e.g. ¥).

readonly Integer rentalPeriodrentalPeriodrentalPeriodrentalPeriod

The period for which the asset can be rented, in hours.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playForPeriod, the value of this property is
derived from the QuantityUnit and QuantityRange elements that are children of that Purchase
element. If a Purchase element with the appropriate PurchaseType is not present, the value of this
field SHALL be undefined.

readonly Integer playCountplayCountplayCountplayCount

The number of plays allowed for this asset when it is purchased.

For assets descriptions containing a Purchase element with a PurchaseType of
urn:tva:metadata:cs:PurchaseTypeCS:2004:playCounts, the value of this property is derived
from the QuantityUnit and QuantityRange elements that are children of that Purchase element. If
a Purchase element with the appropriate PurchaseType is not present, the value of this field SHALL
be undefined.

readonly Integer durationdurationdurationduration

The duration of the asset, in seconds. The value of this property is given by the BCG Duration
element that is a child of the asset’s BasicDescription element.

Page 119 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String previewUripreviewUripreviewUripreviewUri

The URI used to refer to a preview of the asset.

For assets whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the
MediaLocator contained in that element.

For assets without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

readonly BookmarkCollection bookmarksbookmarksbookmarksbookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be
empty.

7.5.5.2 Methods

Boolean isReadyisReadyisReadyisReady()

Description Check whether sufficient information is available to make a purchase or play the
asset. Due to the asynchronous nature of CoD catalogues, not all of the information
required to play or purchase a CoD asset may have been received by the OITF at
any given time. If all of the required information is available, this method SHALL
return true. Otherwise, this method SHALL request the missing information and
return false. When the information is available, the application SHALL be notified
via a ContentActionEvent with the reason code 1.

StringCollection lookupMetadatalookupMetadatalookupMetadatalookupMetadata(String key)

Description Retrieve metadata for the asset. Metadata is stored as key/value pairs - retrieving
the metadata for a specified key SHALL return all values that match that key.

Arguments key The key for the metadata to be returned.

7.5.6 The CODService class

The CODService class is a subclass of CODFolder that represents a subscription CoD service. A subscription CoD
service is similar to a folder, except that:

• The service SHALL be purchased in its entirety, rather than purchasing individual items from the service.

• Business rules may prevent browsing of the content within a service unless the service has already been purchased.

A CODService MAY contain a number of assets, folders and services.

7.5.6.1 Properties

readonly Integer lengthlengthlengthlength

Page 120 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The number of items in the current page of the service.

readonly Integer currentPagecurrentPagecurrentPagecurrentPage

The page number of the currently-available results, as specified in the last call to getPage(). If
getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer pageSizepageSizepageSizepageSize

The number of items that were requested from the content catalogue in a call to getPage(). This
MAY be different from the number of items that are available (e.g. the last page in the collection).

If getPage() has not yet been called, the value of this property SHALL be undefined.

readonly Integer totalSizetotalSizetotalSizetotalSize

The total number of items in the service. This MAY be undefined until getPage() has been called.

The value of this property may be given by the numOfItems attribute of the GroupInformation
element representing this folder.

readonly Integer typetypetypetype

The type of the item, used to distinguish between the types of objects that may be contained in a folder
in a CoD catalogue. This property SHALL always have the value 2 for a CoD service.

readonly String uiduiduiduid

An ID for the service.

Folders, CoD services and CoD assets each have an ID which is unique within their parent catalogue.
The value of this property is given by the serviceId attribute of the BCG ServiceInformation
element that describes the service.

readonly String uriuriuriuri

The URI used to refer to the service. The value of this property is given by the BCG ServiceURL
element that is a child of the ServiceInformation element that describes the service.

readonly String namenamenamename

The name of the service that will be displayed to the user. The value of this property is given by the
BCG Name element that is a child of the ServiceInformation element describing the service.

readonly String descriptiondescriptiondescriptiondescription

Page 121 (356)

 Copyright 2010 © Open IPTV Forum e.V.

A description of the service, for display to an end user. The value of this property is given by the BCG
ServiceDescription element that is a child of the ServiceInformation element describing the
service.

readonly String thumbnailUrithumbnailUrithumbnailUrithumbnailUri

The URI of an image associated with this service. The value of this property is derived from the value
of the first Logo element that is a child of the BCG ServiceInformation element describing the
service. If this element specifies anything other than the URL of an image, the value of this property
SHALL be undefined.

Alternatively, for services whose BCG description contains a RelatedMaterial element indicating a
relationship of Promotional Still Image, the value of this property is given by the MediaURI
element of the MediaLocator contained in that element.

For assets without an appropriate RelatedMaterial or Logo element, the value of this property shall
be undefined.

readonly String previewUripreviewUripreviewUripreviewUri

The URI used to refer to a preview of the content.

For services whose BCG description contains a RelatedMaterial element indicating a relationship of
Trailer or Preview, the value of this property is given by the MediaURI element of the
MediaLocator contained in that element.

For services without an appropriate RelatedMaterial element, the value of this property SHALL be
undefined.

7.5.6.1.1 Methods

Object itemitemitemitem(Integer index)

Description Return the item at position index in the current page, or undefined if no item is
present at that position. This function SHALL only return objects that are instances of
CODAsset, CODFolder, or CODService.

Applications SHALL be able to access items in the collection using array notation
instead of calling this method directly.

Arguments index The index into the collection.

void getPagegetPagegetPagegetPage(Integer page, Integer pageSize)

Description Retrieve one page of the services contents. The application SHALL be notified by an
event targeted at the services parent content catalogue when the data is available.

Calls to this method SHALL cancel any outstanding requests.

Arguments page The number of the page for which data should be retrieved, indexed
from zero.

Page 122 (356)

 Copyright 2010 © Open IPTV Forum e.V.

pageSize The size of the page.

void abortabortabortabort()

Description Abort the current request for a new page of contents. Any results SHALL be removed
(i.e. the value of the length property will be 0 and any calls to the item() method
SHALL return undefined),

Boolean iiiisReadysReadysReadysReady()

Description Check whether sufficient information is available to make a purchase. Due to the
asynchronous nature of CoD catalogues, not all of the information required to play or
purchase a CoD service may have been received by the OITF at any given time. If
all of the required information is available, this method SHALL return true.
Otherwise, this method SHALL request the missing information and return false.
When the information is available, the application SHALL be notified via a
ContentActionEvent with the action code 1.

StringCollection lookupMetadatalookupMetadatalookupMetadatalookupMetadata(String key)

Description Retrieve metadata for the service. Metadata is stored as key/value pairs - retrieving
the metadata for a specified key SHALL return all values that match that key.

Arguments key The key for the metadata to be returned.

7.6 Content Service Protection API
The following requirements SHALL apply to OITF and/or server devices which have indicated support for DRM
protection by providing one or more <drm> elements as specified in Section 9.3.10:

7.6.1 The application/oipfDrmAgent embedded object

An OITF SHALL support a non-visual embedded object of type “application/oipfDrmAgent”, with the following
Javascript API, to enable in-session message exchange from the web page with an underlying DRM agent.

Access to the functionality of the application/oipfDrmAgent embedded object SHALL adhere to the security
requirements as defined in Section 10.1

Note: Annex D provides a clarification to the browser interaction model when dealing with services offering protected
content

7.6.1.1 Properties

function onDRMMessageResultonDRMMessageResultonDRMMessageResultonDRMMessageResult(String msgID, String resultMsg,

 Integer resultCode)

The function that is called when the underlying DRM agent has a result message to report to the
current HTML document as a consequence of a call to sendDRMMessage. The specified function is

Page 123 (356)

 Copyright 2010 © Open IPTV Forum e.V.

called with three arguments msgID, resultMsg and resultCode which are defined as follows:

• String msgID – identifies the original message which has led to this resulting message.

• String resultMsg – DRM system specific result message.

• Integer resultCode – result code. Valid values include:

Result
message

Description Semantics

0 Successful The action(s) requested by sendDRMMessage()
completed successfully.

1 Unknown error sendDRMMessage() failed because an unspecified
error occurred.

2 Cannot process
request

sendDRMMessage() failed because the DRM agent
was unable to complete the request.

3 Unknown MIME
type

sendDRMMessage() failed, because the specified
Mime Type is unknown for the specified DRM system
indicated in the DRMSystemId.

4 User Consent
Needed

sendDRMMessage() failed because user consent is
needed for that action.

5 Unknown DRM
system

sendDRMMessage() failed, because the specified
DRM System in DRMSystemId is unknown.

function ononononDRMSystemStatusChangeDRMSystemStatusChangeDRMSystemStatusChangeDRMSystemStatusChange(String DRMSystemID)

The function that is called when the status of a DRM system changes.

The specified function is called with one argument DRMSystemID which is defined as follows:

• String DRMSystemID – argument that specifies the DRM System ID of the DRM system that
generated the event as defined by element DRMSystemID in Table 8 of Section 3.3.2 of
[OIPF_META2].

7.6.1.2 Methods

String sendDRMMessagesendDRMMessagesendDRMMessagesendDRMMessage(String msgType, String msg, String DRMSystemID)

Description Send message to the DRM agent, using a message type as defined by the DRM
system. Returns a unique ID to identify the message, to be passed as the ‘msgID’
argument for the callback function registered through onDRMMessageResult. This is
an asynchronous method. Applications will be notified of the results of the operation

Page 124 (356)

 Copyright 2010 © Open IPTV Forum e.V.

via events dispatched to onDRMMessageResult and corresponding DOM level 2
events.

Arguments msgType A globally unique message type as defined by the DRM system,
for example:

 application/vnd.marlin.drm.actiontoken+xml

(i.e. MIME type of Marlin Action Token).

Valid values for the msgType parameter include the MIME types
described in Annex C of[OIPF_CSP2].

msg The message to be provided to the underlying DRM agent
formatted according to the message type as indicated by attribute
msgType.

Valid format for the msg parameter are message formats
described in Annex C of [OIPF_CSP2].

DRMSystemID DRMSystemID as defined by element DRMSystemID in Table 9 of
Section 3.3.2 of [OIPF_META2]. For example, for Marlin, the
DRMSystemID value is “urn:dvb:casystemid:19188”.

In the case that parameter msgType indicates a CSPG-CI+
message as described in Section 4.2.3.4.1.1.2 of [OIPF_CSP2],
the DRMSystemID parameter SHALL be specified. Otherwise, the
value may be null.

Integer DRMSystemStatusDRMSystemStatusDRMSystemStatusDRMSystemStatus(String DRMSystemID)

Returns the status of the indicated DRM system.

The specified function is called with one argument DRMSystemID, which is defined as follows:

• String DRMSystemID –argument that specifies the DRM System ID of the DRM system that is
being queried as defined by the element DRMSystemID in Table 8 of Section 3.3.2 of
[OIPF_META2]. For example, for Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”.

The value returned shall be as defined below:

Value Description Semantics

0 READY The DRM system is fully initialised and ready.

1 UNKNOWN Unknown DRM system.

2 INITIALISING The DRM system is initialising and not ready to start
communicating with the application.

3 ERROR There is a problem with the DRM system. It may be possible to
communicate with it to obtain more information.

Page 125 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.6.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMMessageResult DRMMessageResult Bubbles: No

Cancelable: No

Context Info: msgID, resultMsg,
resultCode

onDRMSystemStatusChange DRMSystemStatusChange � Bubbles: No

� Cancelable: No

� Context Info: DRMSystemID

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. The addEventListener()
method SHOULD be called on the application/oipfDrmAgent object itself. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.7 Gateway Discovery and Control APIs
The application/oipfGatewayInfo object SHALL provide the information of the gateway and subsequently
interact with the gateway (e.g. IMS Gateway, Application Gateway, CSPG CI+ Gateway and CSPG-DTCP Gateway) as
defined in Section 4.2. The OITF SHALL support the gateway discovery and control though the use of the following
non-visual embedded object:

<object id=”gatewayinfo” type=”application/oipfGatewayInfo” />

Access to the functionality of the application/oipfGatewayInfo embedded object is privileged and SHALL
adhere to the security requirements defined in Section 10.1.

7.7.1 The application/oipfGatewayInfo embedded obje ct

7.7.1.1 Properties

readonly Boolean isIGSupportedisIGSupportedisIGSupportedisIGSupported

Indicates whether an IMS Gateway is supported or not.

readonly Boolean isAGSupportedisAGSupportedisAGSupportedisAGSupported

Indicates whether an Application Gateway is supported or not.

Page 126 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Boolean isCSPGCIPlusSupportedisCSPGCIPlusSupportedisCSPGCIPlusSupportedisCSPGCIPlusSupported

Indicates whether an CSPG-CI+ Gateway is supported or not.

readonly Boolean isCSPGDTCPSupportedisCSPGDTCPSupportedisCSPGDTCPSupportedisCSPGDTCPSupported

Indicates whether an CSPG-DTCP Gateway is supported or not.

readonly Boolean isisisisIGDiscoverIGDiscoverIGDiscoverIGDiscoveredededed

Indicates whether an IMS Gateway is discovered or not.

Note: This property was formerly referred to as IGDiscoveryIGDiscoveryIGDiscoveryIGDiscovery.

readonly Boolean isisisisAGDiscoverAGDiscoverAGDiscoverAGDiscoveredededed

Indicates whether an Application Gateway is discovered or not.

Note: This property was formerly referred to as AGDiscoveryAGDiscoveryAGDiscoveryAGDiscovery.

readonly Boolean isCSPGCIPlusDiscoveredisCSPGCIPlusDiscoveredisCSPGCIPlusDiscoveredisCSPGCIPlusDiscovered

Indicates whether an CSPG-CI+ Gateway is discovered or not.

readonly Boolean isisisisCSPGCSPGCSPGCSPGDTCPDTCPDTCPDTCPDiscoverDiscoverDiscoverDiscoveredededed

Indicates whether an CSPG-DTCP Gateway is discovered or not.

Note: This property was formerly referred to as cspGatewayDiscoverycspGatewayDiscoverycspGatewayDiscoverycspGatewayDiscovery. The former
cspGatewayDiscoverycspGatewayDiscoverycspGatewayDiscoverycspGatewayDiscovery property is now replaced with isCSPGCIPlusDiscoveredisCSPGCIPlusDiscoveredisCSPGCIPlusDiscoveredisCSPGCIPlusDiscovered for CSPG-CI+
case and isCSPGDTCPDiscoveredisCSPGDTCPDiscoveredisCSPGDTCPDiscoveredisCSPGDTCPDiscovered for CSPG-DTCP case.

readonly String igURLigURLigURLigURL

The URL of the IMS Gateway.

readonly String agURLagURLagURLagURL

The URL of the Application Gateway.

readonly String cspcspcspcspggggDTCPDTCPDTCPDTCPURLURLURLURL

 The URL of the CSPG DTCP gateway.

Page 127 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Note: This property was formerly referred to as cspGatewayURcspGatewayURcspGatewayURcspGatewayURLLLL which was relevant for CSPG-DTCP
case only.

Integer intervalintervalintervalinterval

The periodic interval time (in seconds) to discover the gateways. When the interval property is set, a
UPnP Discovery mechanism is executed.

readonly StringCollection CSPGCIPlusDRMTypeCSPGCIPlusDRMTypeCSPGCIPlusDRMTypeCSPGCIPlusDRMType

Indicates the list of CA Systems supported by the CSPG-CI+ Gateway under the form of URN with the
DVB CASystemID (16 bit number) in there. Each element of CSPGCIPlusDRMType shall be signalled
by prefixing the decimal number format of CA_System_ID with "urn:dvb:casystemid:".

function onDiscoverIGonDiscoverIGonDiscoverIGonDiscoverIG()

The function that SHALL be called when an IMS Gateway is discovered or lost by the OITF which uses
a UPnP Discovery mechanism described in [OIPF_PROT2] Section 10.1.1.1. The actual status of the
gateway (discovered or not) can be determined by reading the isIGDiscovered property.

The specified function is called with no arguments.

function onDiscoverAGonDiscoverAGonDiscoverAGonDiscoverAG()

The function that SHALL be called when an Application Gateway is discovered or lost by the OITF
which uses a UPnP Discovery mechanism described in [OIPF_PROT2] Section 10.1.1.2. The actual
status of the gateway (discovered or not) can be determined by reading the isAGDiscovered property.

The specified function is called with no arguments.

function onDiscoverCSPGCIPlusonDiscoverCSPGCIPlusonDiscoverCSPGCIPlusonDiscoverCSPGCIPlus()

The function that SHALL be called when a CSPG-CI+ Gateway is discovered or lost by the OITF
(including any change to the DRM systems supported by that gateway). The CSPG-CI+ Gateway
SHALL be discovered as defined in [OIPF_CSP2]. The actual status of the gateway (discovered or not)
can be determined by reading the isCSPCIPlusGDiscovered property.

The specified function is called with no arguments.

function onDiscoverCSPGonDiscoverCSPGonDiscoverCSPGonDiscoverCSPGDTCPDTCPDTCPDTCP()

The function that SHALL be called when a CSPG-DTCP Gateway is discovered or lost by the
OITFwhich uses a UPnP Discovery mechanism described in [OIPF_PROT2] Section 10.1.1.3. The
actual status of the gateway (discovered or not) can be determined by reading the
isCSPGDTCPDiscovered property.

The specified function is called with no arguments.

Note: This property was formerly referred to as onDiscoverCSPGonDiscoverCSPGonDiscoverCSPGonDiscoverCSPG. The former onDiscoverCSPGonDiscoverCSPGonDiscoverCSPGonDiscoverCSPG

Page 128 (356)

 Copyright 2010 © Open IPTV Forum e.V.

property is now replaced with onDiscoverCSPGCIPlusonDiscoverCSPGCIPlusonDiscoverCSPGCIPlusonDiscoverCSPGCIPlus for CSPG-CI+ case and
onDiscoverCSPGDTCPonDiscoverCSPGDTCPonDiscoverCSPGDTCPonDiscoverCSPGDTCP for CSPG-DTCP case.

7.7.1.2 Methods

Boolean isIGSupportedMethodisIGSupportedMethodisIGSupportedMethodisIGSupportedMethod(String MethodName)

Description Shall return true when the IG supports the method named MethodName. If the
function returns false, it indicates that IG does not support the specified method.

7.7.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 even t DOM 2 Ev ent properties

onDiscoverIG DiscoverIG Bubbles: No

Cancelable: No

onDiscoverAG DiscoverAG Bubbles: No

Cancelable: No

onDiscoverCSPGCIPlus DiscoverCSPGCIPlus Bubbles: No

Cancelable: No

onDiscoverCSPGDTCP DiscoverCSPGDTCP Bubbles: No

Cancelable: No

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DiscoverIG, DiscoverAG, DiscoverCSPGCIPlus and DiscoverCSPGDTCP event
during the bubbling or the capturing phase. Applications that use DOM 2 event handlers SHALL call the
addEventListener() method on the application/oipfGatewayInfo object. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.8 IMS Related APIs
If an OITF has indicated support for the control of its IMS functionality by a server by stating <ims>true</ims> as
defined in Section 9.3.9 in its capability description, the OITF SHALL support IMS through the use of the following
non-visual object:

<object type=”application/oipfIMS”/>

The IMS API provides the necessary javascript methods to register new users in the IMS network. It also provides
methods to register users (registerUser), along with the supported feature tags, IMS Communication Service
Identifier (ICSI) and IMS Application Reference Identifier (IARI), and de-register users (deRegisterUser). A method
getRegisteredUsers is also defined to view all the registered users. A method getAllUsers retrieves all users
provisioned in the IG. Once registered it is possible to switch users for using IMS services by using method setUser.

Page 129 (356)

 Copyright 2010 © Open IPTV Forum e.V.

A property is defined to view the current user to be used for a service (currentUser).

In order to handle the out-of-session IMS notifications, namely, the new dialogues, there is a method for subscribing to
these events (subscribeIMSNotification). All new dialogues are communicated through a callback function
(onIMSNotification) to the application instance performing the subscription.

The IMS APIs apply only to privileged applications and SHALL adhere to the security model as defined in Section 10.

7.8.1 The application/oipfIMS embedded object

7.8.1.1 Constants

The following constants are defined as properties on the application/oipfIMS embedded object:

Name Value Use

STATE_REGISTERED 0 Specifies that the user has been successfully
registered (not subscribed to registration
event).

This also represents the state when the
registration event subscription has been
terminated for some reason by network.

STATE_REGISTERED_SUBSCRIPTION_PENDING 1 Indicates that user is registered successfully
but the subscription-state for the registration
event indicates a status of "pending".

STATE_REGISTERED_SUBSCRIPTION_ACTIVE 2 Specifies that the user has been successfully
registered and subscribed to registration
event (i.e. subscription-state for registration
event indicates a status of "active").

STATE_DEREGISTERED 3 Specifies that the user has been successfully
deregistered. This can be result of network
initiated/locally initiated deregistration
request.

STATE_FAILURE 4 Represents a failure condition.

7.8.1.2 Properties

function onIMSNotificationonIMSNotificationonIMSNotificationonIMSNotification(String responseHeaders, String msgText,

 Document msgXML)

This function is called on the application which called subscribeIMSNotification when an
unsolicited IMS notification arrives. The application will be notified of all IMS notifications corresponding
to any of the subscribed-to feature tags regardless of which application subscribed to it.

The specified function is called with 3 arguments.

• String responseHeaders – The concatenated list of all HTTP headers, as a single string, with
each header line separated by a U+000D (CR) U+000A (LF) pair excluding the status line. In

Page 130 (356)

 Copyright 2010 © Open IPTV Forum e.V.

absence of HNI-IGI interface, the responseHeaders will be a concatenated list all SIP headers,
as a single string, with each header line separated by a U+000D (CR) U+000A (LF) pair
excluding the status line.

• String msgText – the response entity body as a string, as defined in [XHR].

• Document msgXML – the response entity body as a Document, as defined in [XHR].

function onNotificationResultonNotificationResultonNotificationResultonNotificationResult(Integer resultMsg)

This function is called with return result from the subscribeIMSNotification method.

This function is not invoked in the case when there is no re-registration as part of
subscribeIMSNotification.

The specified function is called with a single argument – resultMsg.

• Integer resultMsg – result message from performing subscribeIMSNotification method.

Result
message

Description Semantics

0 Successful The action performed by the underlying functionality was
successful.

1 Unknown error The action performed by the underlying functionality failed
because an unspecified error occurred.

2 Wrong user
credentials

The user credentials was not accepted by the server.

3 The user doesn’t
exist.

The user id doesn’t exist in the local user table.

function onRegistrationContextUpdateonRegistrationContextUpdateonRegistrationContextUpdateonRegistrationContextUpdate(String user, Integer state, Integer
errorCode)

This function is called with return result from the methods registerUser and deRegisterUser. In
addition, the function is also called whenever there is an update to the registration status of specified
user.

The specified function is called with 3 arguments – user, state and errorCode.

• String user – The IMPU of the user.

• Integer state – The current state of the registration as indicated using the constant values
defined in 7.8.1.1.

• Integer errorCode – In case of STATE_FAILED state, provides more information on reason
for failure.

errorCode Description Semantics

Page 131 (356)

 Copyright 2010 © Open IPTV Forum e.V.

1 Unknown error The action performed by the underlying functionality failed
because an unspecified error occurred.

2 Wrong user
credentials

The user credentials were not accepted by the server. The DAE
may request from the user a new PIN which can then be used
to call the registerUser() method.

3 The user
doesn’t exist.

The user id doesn’t exist in the local user table.

readonly UserData currentUsercurrentUsercurrentUsercurrentUser

The current user property represents the public user identity which is being used or shall be used for
HNI-IGI communication. If not set then the default user shall be used or indicated. It shall be set to the
default user if a user has not been explicitly set using the setUser() method.

7.8.1.3 Methods

UserDataCollection getRegisteredUsersgetRegisteredUsersgetRegisteredUsersgetRegisteredUsers()

Description Return all the users that are currently registered with the IG.

Void registerUserregisterUserregisterUserregisterUser(String userId, String pin)

Description This method performs user registration to the IMS network.

Results from this method is sent to the callback method
onRegistrationContextUpdate.

Arguments userId The user identifier represents the public user identity or IMPU.

pin The pin is optional and carries the password to be used towards the IG in
case of HTTP Digest over HNI-IGI interface or SIP Digest if there is no
HNI-IGI. If pin is not specified then the default user password shall be used.

The pin used for digest authentication is limited to the HNI-IGI interface
with the IG and SHALL NOT impact the HTTP Digest requests from within
the DAE application. Note that for non-native HNI-IGI support is not
applicable.

void deRegisterUserdeRegisterUserdeRegisterUserdeRegisterUser(String userId)

Description The indicated user is de-registered from IMS. Any sessions that may be open are
closed. De-registration of default user has no effect nor de-registration of any users
registered from a native application in the OITF.

Results from this method is sent to the callback method
onRegistrationContextUpdate.

Arguments userId The user identifier represents the public user identity or IMPU.

Page 132 (356)

 Copyright 2010 © Open IPTV Forum e.V.

UserDataCollection getAllUsersgetAllUsersgetAllUsersgetAllUsers()

Description Return all the users that are currently provisioned in the IG. The first entry in the
collection is the default user. The users are retrieved according to [OIPF_PROT2]
Section 5.3.6.3.

Boolean setUsersetUsersetUsersetUser(String userId)

Description When invoked, any ongoing sessions for the current user shall be closed.

If setUser is unsuccessful due to user not being registered, it is necessary to first
register the user and wait for a successful response to the
onRegistrationContextUpdate callback function.

If the user gets deregistered (either by the local application or by the network), any
ongoing sessions for the user shall be closed .The default user shall be automatically
assumed for all IMS services until overridden again by setUser method.

Argument userId The user identifier represents the public user identity or IMPU.

void subscribeIMSNotificationsubscribeIMSNotificationsubscribeIMSNotificationsubscribeIMSNotification(FeatureTagCollection featureTagCollection,
Boolean performUserRegistration)

Description This method subscribes for new IMS out-of-session dialogues for the indicated
application for the currently active user. The notification shall be notified using
onIMSNotification callback method.

If the application that made the subscription closes then there is an automatic un-
subscription to new notifications. Otherwise it is possible to perform
unsubscribeIMSNotification.

Any new dialogues shall be notified over the callback method onIMSNotification.

Arguments featureTagCollection The FeatureTagCollection object of the DAE
application. The inclusion of featureTag values other
than null indicates which dualogues are reported. The
dialogues that match the featureTag are to be reported.
The inclusion of null indicates that all dialogues are to
be reported.

performUserRegistration If this is true a new user registration is required.
SHOULD be set to false if it is know that other
applications will be registered shortly

This parameter is ignored in the case when the filtering
of IMS notifications is done locally. In this case, the initial
registration for active user will include all feature tags.

void unsubscribeIMSNotificationunsubscribeIMSNotificationunsubscribeIMSNotificationunsubscribeIMSNotification()

Description The DAE application calling this method will be de-registered for IMS notifications.
Associated feature tag(s) for the DAE application are removed from the
featureTagCollection object for the user. A re-registration will be performed for the

Page 133 (356)

 Copyright 2010 © Open IPTV Forum e.V.

corresponding user if IMS notifications are not locally filtered.

Results from this method is sent to the callback method onNotificationResult.

7.8.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt
properties

onNotificationResult NotificationResult Bubbles: No

Cancelable: No

Context Info:
resultMsg

onIMSNotification IMSNotification Bubbles: No

Cancelable: No

Context Info: callId,
contact, from, to

onRegistrationContextUpdate RegistrationContextUpdate Bubbles: No

Cancelable: No

Context Info: user,
state, errorCode

7.8.2 Extensions to application/oipfIMS for communi cation services

If a client has indicated support for the control of its Communication Services functionality by a server by stating
<communication_services>true</communication_services> as defined in Section 9.3.9 in its capability
description, the client SHALL support IMS through the use of the following non-visual embedded object:

<object type=”application/oipfIMS”/>

The Communication Services API provides for instant messaging, presence and contact list services. The messages can
either be in a chat session using MSRP (see [OIPF_PROT2]) or page mode messages sent without a session. The support
of Communication Services SHALL follow the OMA specification [PRES], [IM].

The Communication Services API SHALL be supported in combined OITF and IG deployment cases. It MAY be
supported in other deployment cases. The use of the HNI-IGI interface is OPTIONAL between the OITF and IG when
these are co-deployed.

7.8.2.1 Properties

function onIncomingMessageonIncomingMessageonIncomingMessageonIncomingMessage(String fromURI, String msg, Integer cid)

The function that is called when an incoming chat message is received for the active user.

Page 134 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The specified function is called with 3 arguments:

• String fromURI – The sender address of the message.

• String msg – The text message sent by the remote peer.

• Integer cid – chat session identifier. This may be an identifier returned by a call to the
openSession() method if the session was initiated by the current application, a different value if
the session was started by a remote peer. If the message is to be sent outside a chat session,
the value of this argument SHALL be undefined.

function onContactStatusChangeonContactStatusChangeonContactStatusChangeonContactStatusChange(String remoteURI, Integer state)

This function is called when status has changed for a contact in the contact list or a user used with the
method subscribeToStatus.

The specified function is called with 2 arguments:

• String remoteURI – The user address for which the status has changed.

• Integer state – Set to 1 if the user is present, and 0 if not. Other values may be defined in the
future.

function onNewWatcheronNewWatcheronNewWatcheronNewWatcher(String remoteURI)

This function is called when a remote URI is requesting watcher authorization of the local user’s
presentity.

The specified function is called with one argument:

• String remoteURI – The remote user address which requested watcher authorization.

7.8.2.2 Methods

Integer openChatSessionopenChatSessionopenChatSessionopenChatSession(String toURI)

Description Opens a chat session with a remote user.

Returns an integer identifier for the chat session to be used when a message is sent
in the chat session or to match when incoming message is received.

Arguments toURI The address of the remote chat user.

void sendMessageInSessionsendMessageInSessionsendMessageInSessionsendMessageInSession(Integer cid, String msg)

Description Sends a new text message in a chat session. The chat can either be started by the
user by calling the method openChatSession() or can be a session received in the
onIncomingMessage callback function.

Page 135 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Arguments cid The chat session identifier.

msg Text message to send.

void closeChatSessioncloseChatSessioncloseChatSessioncloseChatSession(Integer cid)

Description Closes a chat session.

Arguments cid The chat session identifier.

void sendMessagesendMessagesendMessagesendMessage(String toURI, String msg)

Description Sends a new text message to a remote peer without starting a session.

Arguments toURI The address of the remote chat user.

msg Text message to send.

void setStatussetStatussetStatussetStatus(Integer state)

Description Sets the presence state of the local user.

Arguments state Set to 1 if the user is present, and 0 if not. Other values may be
defined in the future.

void subscribeToStatussubscribeToStatussubscribeToStatussubscribeToStatus(String remoteURI)

Description Subscribe to status for a remote user.

Arguments remoteURI The address of the remote user.

ContactCollection getContactsgetContactsgetContactsgetContacts()

Description Get the users contact list.

void allowContactallowContactallowContactallowContact(String remoteURI)

Description Allows the watcher authorization to subscribe to the local user’s presentity.

Arguments remoteURI The address of the remote user.

void blockContactblockContactblockContactblockContact(String remoteURI)

Description Blocks the watcher authorization to subscribe to the local user’s presentity.

Arguments remoteURI The address of the remote user.

Page 136 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Boolean createContactListcreateContactListcreateContactListcreateContactList(String contactListUri, ContactCollection contacts)

Description Creates a contact list

Arguments contactListUri The public user identity or IMPU of the contact list.

contacts The collection of contact objects representing the members of the
list.

ContactCollection getContactsgetContactsgetContactsgetContacts(String contactListUri)

Description Get the users in the specified contact list

Arguments contactListUri The public user identity or IMPU of the contact list.

Boolean addToContactListaddToContactListaddToContactListaddToContactList(String contactListUri, Contact member)

Description Updates the specified contact list by adding a new member to that list

Arguments contactListUri The public user identity or IMPU of the contact list
to be updated.

member The new contact to be added to the list.

Boolean removeFromContactListremoveFromContactListremoveFromContactListremoveFromContactList(String contactListUri, Contact member)

Description Updates the specified contact list by removing specified member from that list

Arguments contactListUri The public user identity or IMPU of the contact list
to be updated.

member The new contact to be removed from the list

Boolean deleteContactListdeleteContactListdeleteContactListdeleteContactList(String contactListUri)

Description Deletes the specified contact list

Arguments contactListUri The public user identity or IMPU of the contact list
to be deleted

void aaaallowAllContactsllowAllContactsllowAllContactsllowAllContacts(String domain)

Description Allows all watchers belonging to specified domain authorization to subscribe to local
user’s presentity. If null, then all contacts will be allowed.

Arguments domain Watchers belonging to this domain are authorized to
subscribe. If null, then all watchers are authorized
to subscribe irrespective of domain.

Page 137 (356)

 Copyright 2010 © Open IPTV Forum e.V.

void blockAllContactsblockAllContactsblockAllContactsblockAllContacts(String domain)

Description Blocks all watchers belonging to specified domain from subscribing to local user’s
presentity. If null, then all contacts will be blocked.

Arguments domain Watchers belonging to this domain are denied
authorization to subscribe. If null, then all
watchers are blocked from subscribing irrespective
of domain.

7.8.2.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onIncomingMessage IncomingMessage Bubbles: No

Cancelable: No

Context Info: fromURI,msg,cid

onContactStatusChange ContactStatusChange Bubbles: No

Cancelable: No

Context Info: remoteURI,present

onNewWatcher NewWatcher Bubbles: No

Cancelable: No

Context Info: remoteURI

7.8.3 The UserData class

7.8.3.1 Properties

readonly String userIduserIduserIduserId

The user identifier represents the public user identity or IMPU.

readonly FeatureTagCollection featureTagsfeatureTagsfeatureTagsfeatureTags

The FeatureTag data is optional (may have a value of null) and carries a collection of feature tag
objects associated to an application. For example the feature tag may be an ICSI or IARI or a feature
tag identifying the service for. an incoming instant messages. The object includes feature tags related

Page 138 (356)

 Copyright 2010 © Open IPTV Forum e.V.

to both DAE and native applications in OITF.

readonly String friendlyNamefriendlyNamefriendlyNamefriendlyName

The friendly name for the user. Used as display name in outgoing messages.

7.8.4 The UserDataCollection class

typedef Collection<UserData> UserDataCollection

The UserDataCollection class represents a collection of UserData objects. See annex K for the definition of the
collection template.

7.8.5 The FeatureTag class

7.8.5.1 Properties

readonly String featureTagfeatureTagfeatureTagfeatureTag

A string containing a featureTag value associated to an application. The featureTag value may have a
value of null when used with the subscribeImsNotification() method on the
application/oipfIMS object. This indicates that all dialogues are reported.

The feature tag SHALL populate the X-OITF- headers as specified in [TISPAN] Section 5.6.2, [IM],
[3GPP TS 24.229], [RFC3840] and [RFC3841].

7.8.6 The FeatureTagCollection class

typedef Collection<FeatureTag> FeatureTagCollection

The FeatureTagCollection class represents a collection of FeatureTag objects. See annex K for the definition of
the collection template.

7.8.7 The Contact class

7.8.7.1 Properties

String contactIdcontactIdcontactIdcontactId

The contact identifier represents the public user identity or IMPU used in communication with the
contact.

String friendlyNamefriendlyNamefriendlyNamefriendlyName

The friendly name for the user. Used as display name in outgoing messages.

Page 139 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.8.8 The ContactCollection class

typedef Collection<Contact> ContactCollection

The ContactCollection class represents a collection of Contact objects. See annex K for the definition of the
collection template.

In addition to the methods and properties defined for generic collections, the ContactCollection class supports the
additional methods defined below.

7.8.8.1 Methods

Boolean removeremoveremoveremove(String contactId)

Description Removes the contact represented by contactId from the users IMS contact list.

Returns true on success.

Arguments contactId Contact identifier of the user in the IMS contact list.

Boolean addaddaddadd(Contact contact)

Description Adds the contact represented by the Contact object to the users IMS contact list.

Returns true on success.

Arguments contact Contact object to be added from users IMS contact list.

7.9 Parental rating and parental control APIs
This section defines APIs related to parental ratings and parental control.

Sections 7.9.1 through 7.9.3 define a new Javascript embedded object
application/oipfParentalControlManager and the related ParentalRatingScheme and
ParentalRatingSchemeCollection objects, which allows applications to construct a new parental rating scheme
(and a parental rating value using that scheme), and to temporarily enable or disable viewing of a content item. These
APIs SHALL be supported if an OITF supports parental controls as indicated by value “true” for element
<parentalcontrol> (as defined by Section 9.3.5) in its capability profile.

Sections 7.9.4 and 7.9.5 define the ParentalRating and ParentalRatingCollection objects. These objects are
used/referenced by various other objects, such as the Programme object as defined in Section 7.16.2 to indicate a
particular parental rating. The support for these objects depends on the support for the sections in which these are used.

7.9.1 The application/oipfParentalControlManager em bedded object

If an OITF supports parental controls as indicated by value “true” for element <parentalcontrol> (as defined by
Section 9.3.5) in its capability profile, the OITF SHALL support the
application/oipfParentalControlManager object with the following interface

The following example shows a possible usage scenario for the application/oipfParentalControlManager,
i.e. to add a new parental rating scheme to the parentalRatingSchemes collection:

//get a reference to the parental control manager object
var pcManager = document.getElementById(“pcmanager”);

Page 140 (356)

 Copyright 2010 © Open IPTV Forum e.V.

// add a new rating scheme – in this case, the MPAA rating scheme
pcManager.parentalRatingSchemes.addParentalRatingScheme(
 “urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001”, “G,PG,PG-13,R,NC-17,NR”);

The following example shows a possible usage scenario for the application/oipfParentalControlManager,
i.e. to temporarily unblock a blocked content item (e.g. after asking the user to enter the parental control pin):

// If a content item is blocked, the event “onParentalRatingChange” can be captured,
// and the setParentalControlStatus() method can be used to temporarily unblock the
// content (e.g. after asking the user to enter the parental control pin)

function askForPin() { … }

...

//get a reference to the A/V player object
var avPlayer = document.getElementById(“avPlayer”);

avPlayer.onParentalRatingChange = function() {var
pin=askForPin();pcManager.setParentalControlStatus(pin, false)};

7.9.1.1 Properties

readonly ParentalRatingSchemeCollection parentalRatingSchemesparentalRatingSchemesparentalRatingSchemesparentalRatingSchemes

A reference to the collection of rating schemes known by the OITF.

readonly Boolean isPINEntryLockedisPINEntryLockedisPINEntryLockedisPINEntryLocked

The lockout status of the parental control PIN. If the incorrect PIN has been entered too many times
in the configured timeout period, parental control PIN entry SHALL be locked out for period of time
determined by the OITF.

7.9.1.2 Methods

Integer setParentalControlStatussetParentalControlStatussetParentalControlStatussetParentalControlStatus(String pcPIN, Boolean enable)

Description As defined in [OIPF_CSP2], the OITF shall prevent the consumption of a programme
when its parental rating doesn't meet the parental rating criterion currently defined in
the OITF. Calling this method with enable set to false will temporarily allow the
consumption of any blocked programme.

Setting the parental control status using this method SHALL set the status until the
consumption of any of all the blocked programmes terminates (e.g. until the content
item being played is changed), or another call to the
setParentalControlStatus() method is made.

Setting the parental control status using this method has the following effect :for the
Programme and Channel objects as defined in Sections 7.16.2 and 7.13.12, the
blocked property of a programme or channel SHALL be set to true for programmes
whose parental rating does not meet the applicable parental rating criterion, but the
locked property SHALL be set to false.

This operation to temporarily disable parental rating control SHALL be protected by
the parental control PIN (i.e. through the pcPIN argument). The return value indicates
the success of the operation, and SHALL take one of the following values:

Page 141 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

Arguments pcPIN The parental control PIN.

enable Flag indicating whether parental control should be enabled.

Boolean getParentalControlStatusgetParentalControlStatusgetParentalControlStatusgetParentalControlStatus()

Description Returns a flag indicating the temporary parental control status set by
setParentalControlStatus(). Note that the returned status covers parental
control functionality related to all rating schemes.

Boolean getBlockUnratedgetBlockUnratedgetBlockUnratedgetBlockUnrated()

Description Returns a flag indicating whether or not the OITF has been configured by the user to
block content for which a parental rating is absent.

Integer setParentalControlPINsetParentalControlPINsetParentalControlPINsetParentalControlPIN(String oldPcPIN, String newPcPIN)

Description Set the parental control PIN.

This operation SHALL be protected by the parental control PIN (if PIN entry is
enabled). The return value indicates the success of the operation, and SHALL take
one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

Arguments oldPcPIN The current parental control PIN.

newPcPIN The new value for the parental control PIN.

Integer unlockWithParentalControlPINunlockWithParentalControlPINunlockWithParentalControlPINunlockWithParentalControlPIN(String pcPIN, Object target, Integer

Page 142 (356)

 Copyright 2010 © Open IPTV Forum e.V.

duration)

Description Unlock the object specified by target for viewing if pcPIN contains the correct
parental control PIN.

This operation SHALL be protected by the parental control PIN (if PIN entry is
enabled). The return value indicates the success of the operation, and SHALL take
one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

Arguments pcPIN The parental control PIN.

target The channel or programme to be unlocked.

duration The length of time (in seconds) for which the item SHALL be
unlocked.

Integer verifyParentalControlPINverifyParentalControlPINverifyParentalControlPINverifyParentalControlPIN(String pcPIN)

Description Verify that the PIN specified by pcPIN is the correct parental control PIN.

This method will return one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too
many times. The number of invalid PIN attempts before PIN entry is
locked is outside the scope of this specification.

Arguments pcPIN The parental control PIN to be verified.

Integer setBlockUnratedsetBlockUnratedsetBlockUnratedsetBlockUnrated(String pcPIN, Boolean block)

Description Set whether programmes for which no parental rating has been retrieved from the
metadata client nor defined by the service provider should be blocked automatically
by the terminal.

Page 143 (356)

 Copyright 2010 © Open IPTV Forum e.V.

This operation SHALL be protected by the parental control PIN (if PIN entry is
enabled). The return value indicates the success of the operation, and SHALL take
one of the following values:

Value Description

0 The PIN is correct.

1 The PIN is incorrect.

2 PIN entry is locked because an invalid PIN has been entered too many
times. The number of invalid PIN attempts before PIN entry is locked is
outside the scope of this specification.

Arguments pcPIN The parental control PIN.

block Flag indicating whether programmes SHALL be blocked.

7.9.2 The ParentalRatingScheme class

typedef Collection<String> ParentalRatingScheme

A ParentalRatingScheme describes a single parental rating scheme that may be in use for rating content, e.g. the
MPAA or BBFC rating schemes. It is a collection of strings representing rating values, which next to the properties and
methods defined below SHALL support the array notation to access the rating values in this collection. For the natively
OITF supported parental rating systems the values SHALL be ordered by the OITF to allow the rating values to be
compared in the manner as defined for property threshold for the respective parental rating system. Using a threshold as
defined in this API may not necessarily be the proper way in which parental rating filtering is applied on the OITF, e.g.
the US FCC requirements take precedence for device to be imported to the US.

The parental rating schemes supported by a receiver MAY vary between deployments.

See annex K for the definition of the collection template. In addition to the methods and properties defined for generic
collections, the ParentalRatingScheme class supports the additional properties and methods defined below.

7.9.2.1 Properties

readonly String namenamenamename

The unique name that identifies the parental rating scheme. Valid strings include:

• the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as
defined by the uri attribute of one of the parental rating <ClassificationScheme> elements in
[MPEG-7].

• the string value ”urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as
defined in [META].

• the string value “dvb-si”: this means that the scheme of a minimum recommended age encoded
as per [EN 300 468], is used to represent the parental rating values.

Page 144 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the value of name is “dvb-si”, the ParentalRatingScheme remains empty (i.e.
ParentalRatingScheme.length == 0).

readonly ParentalRating thresholdthresholdthresholdthreshold

The parental rating threshold that is currently in use by the OITF’s parental control system for this rating
scheme, which is encoded as a ParentalRating object in the following manner:

If the value of the name property of the ParentalRatingScheme object is unequal to “dvb-si”, then:

• the value property of the threshold object represents the value for which items with a
ParentalRating.value greater or equal to the value property of the threshold object have
been configured by the OITF’s parental control subsystem to be blocked.

• the labels property of the threshold object represents the bit map of zero or more flags for which
items with a ParentalRating.labels property with any of the same flags set have been
configured by the OITF’s parental control subsystem to be blocked.

If the value of the name property of the ParentalRatingScheme object is “dvb-si”, the threshold
indicates a minimum recommended age encoded as per [EN 300 468] at which or above which the
content is being blocked by the OITF’s parental control subsystem

Note that the value property as an index into the ParentalRating object that defines the threshold
can be 1 larger than the value of ParentalRatingScheme.length to convey that no content is being
blocked by the parental control subsystem.

7.9.2.2 Methods

Integer indexOfindexOfindexOfindexOf(String ratingValue)

Description Return the index of the rating represented by attribute ratingValue inside the
parental rating scheme string collection, or -1 if the rating value cannot be found in
the collection.

Arguments ratingValue The case-insensitive string representation of a parental rating
value. See property name in Section 7.9.1.1 for more information
about possible values.

String iconUriiconUriiconUriiconUri(Integer index)

Description Return the URI of the icon representing the rating at index in the rating scheme, or
undefined if no item is present at that position. If no icon is available, this method
SHALL return null.

Arguments index The index of the parental rating scheme.

7.9.3 The ParentalRatingSchemeCollection class

typedef Collection<ParentalRatingScheme> ParentalRatingSchemeCollection

Page 145 (356)

 Copyright 2010 © Open IPTV Forum e.V.

A ParentalRatingSchemeCollection represents a collection of parental rating schemes, e.g. as returned by
property parentalRatingSchemes of the “application/oipfParentalControlManager” object as defined
in Section 7.9.1. Next to the properties and methods defined below a ParentalRatingSchemeCollection object
SHALL support the array notation to access the parental rating scheme objects in this collection.

See annex K for the definition of the collection template. In addition to the methods and properties defined for generic
collections, the ParentalRatingSchemeCollection class supports the additional properties and methods defined
below.

7.9.3.1 Methods

ParentalRatingScheme addParentalRatingSchemeaddParentalRatingSchemeaddParentalRatingSchemeaddParentalRatingScheme(String name, String values)

Description Create a new ParentalRatingScheme object and adds it to the
ParentalRatingSchemeCollection. Applications MAY use this method to register
additional parental rating schemes with the platform. When registered, the new
parental rating scheme SHALL (temporarily) be accessible through the
parentalRatingSchemes property of the
“application/oipfParentalControlmanager” object as defined in Section 7.9.1.

The application SHALL make sure that the values are ordered in such a way to allow
the rating values to be compared in the manner as defined for the threshold
property for the respective parental rating system.

This method returns a reference to the ParentalRatingScheme object representing
the added scheme. If the value of the name parameter corresponds to an already-
registered rating scheme, this method returns a reference to the existing
ParentalRatingScheme object. If the newly defined rating scheme was not known
to the OITF, the scheme MAY be stored persistently, and the OITF may offer a UI to
set the parental rating blocking criteria for the newly added parental rating scheme.

If the OITF has successfully stored (persistently or not persistently) the additional
parental rating scheme, the method SHALL return a non-null
ParentalRatingScheme object.

Arguments name A unique string identifying the parental rating scheme to which this
value refers. See property name in Section 7.9.1.1 for more
information about possible values.

values A comma-separated list of the possible values in the rating
scheme, in ascending order of severity. In case the rating scheme
is one of the [MPEG-7] rating classification schemes, this means
that the list of parental rating values contains the values as
specified by the <Name> elements of the <Term> elements in the
order of appearance as they are defined for the classification
scheme, with the exception of the Internet Content Rating
Association (ICRA) based ratings, for which the reverse order has
to be applied. The values must be ordered in such a way to allow
the rating values to be compared in the manner as defined for
property threshold for the respective parental rating system.

ParentalRatingScheme getParentalRatingScgetParentalRatingScgetParentalRatingScgetParentalRatingSchemehemehemeheme(String name)

Description This method returns a reference to the ParentalRatingScheme object that is
associated with the given scheme as specified through parameter name. If the value
of name does not corresponds to the name property of any of the
ParentalRatingScheme objects in the ParentalRatingSchemeCollection, the

Page 146 (356)

 Copyright 2010 © Open IPTV Forum e.V.

method SHALL return undefined.

Arguments name The unique name identifying a parental rating scheme.

7.9.4 The ParentalRating class

A ParentalRating object describes a parental rating value for a programme or channel. The ParentalRating
object identifies both the rating scheme in use, and the parental rating value within that scheme.

In case of a BCG the values of the properties in this object will be read from the ParentalGuidance element that is
the child of a programme’s BCG description.

Example usage:

<!-- This example shows a possible usage scenario for the ParentalRating
 datastructure, i.e. to create a new programme to record and set
 parental rating to MPAA parental rating to PG-13.
-->
...
<script type="text/javascript" language="Javascript1.5">

// get a reference to the recorder object
var recorder = document.getElementById("recorder");

// create new programme to record
var myProgramme = recorder.createProgrammeObject();

// add a new parental rating value to myProgramme, in this case the
// programme is rated PG-13 for the US using the MPAA Parental rating scheme.
myProgramme.parentalRatings.addParentalRating(
 "urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001", ”PG-13”, 2, 0, “US”
);

</script>
...
<object id="recorder" type="application/oipfRecordingScheduler"/>

7.9.4.1 Properties

readonly String namenamenamename

The case-insensitive string representation of the parental rating value for the respective rating scheme
denoted by property scheme.

Valid strings include:

• if the value of property scheme represents one of the parental rating classification scheme names
identified by [MPEG-7]: the string representation of one of the parental rating values as defined
by one of the <Name> elements.

• if the value of property scheme is ”urn:oipf:GermanyFSKCS” , the string representation of one
the values for the GermanyFSK rating scheme as defined in [OIPF_META2].

• if the value of property scheme is equal to “dvb-si”, the string representation of the minimum
recommended age encoded as per [EN 300 468], which corresponds to rating_type 0 in
[IEC62455].

An example of a valid parental rating value is “PG-13”.

Page 147 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String schemeschemeschemescheme

Unique case-insensitive name identifying the parental rating guidance scheme to which this parental
rating value refers. Valid strings include:

• the URI of one of the MPEG-7 classification schemes representing a parental rating scheme as
defined by the uri attribute of one of the parental rating <ClassificationScheme> elements in
[MPEG-7]

• the string value ”urn:oipf:GermanyFSKCS” to represent the GermanyFSK rating scheme as
defined in [OIPF_META2].

• the string value “dvb-si”: this means that the scheme of a minimum recommended age encoded
as per [EN 300 468], is used to represent the parental rating values.

readonly Integer valuevaluevaluevalue

The parental rating value represented as an index into the set of values defined as part of the
ParentalRatingScheme identified through property scheme.

If an associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme() on property parentalRatingSchemes of the
application/oipfParentalControlManager object and the value of property scheme is not equal
to ”dvb-si”, then the value property SHALL represent the index of the parental rating value inside the
ParentalRatingScheme object, or -1 if the value cannot be found. If the value of property scheme is
equal to ”dvb-si”, then this property SHALL be the integer representation of the string value of
ParentalRating property name.

If no associated ParentalRatingScheme object can be found by calling method
getParentalRatingScheme on property parentalRatingSchemes of the
application/oipfParentalControlManager object, then the value property SHALL have value
undefined.

readonly Integer labelslabelslabelslabels

The labels property represents a set of parental advisory flags that may provide additional information
about the rating.

The value of this field is a 32 bit integer value that represents a binary mask corresponding to the sum
of zero or more label values defined in the table below. If no labels have been explicitly set, the value
for the labels property SHALL be 0.

Valid labels include:

Value Binary representation
(least significant 16 bits) Description

1 00000000 00000001 Indicates that a content item features sexual suggestive
dialog.

2 00000000 00000010 Indicates that a content item features strong language.

4 00000000 00000100 Indicates that a content item features sexual situations.

Page 148 (356)

 Copyright 2010 © Open IPTV Forum e.V.

8 00000000 00001000 Indicates that a content item features violence.

16 00000000 00010000 Indicates that a content item features fantasy violence.

32 00000000 00100000 Indicates that a content item features disturbing scenes.

64 00000000 01000000 Indicates that a content item features portrayals of
discrimination.

128 00000000 10000000 Indicates that a content item features scenes of illegal drug
use.

256 00000001 00000000 Indicates that a content item features strobing that could
impact viewers suffering from Photosensitive epilepsy

readonly String regionregionregionregion

The region to which the parental rating value applies as case-insensitive alpha-2 region code as
defined in ISO 3166-1. Returns undefined if no specific region has been defined.

7.9.5 The ParentalRatingCollection class

typedef Collection<ParentalRating> ParentalRatingCollection

A ParentalRatingCollection represents a collection of parental rating values. See annex K for the definition of
the collection template.

In addition to the methods and properties defined for generic collections, the ParentalRatingCollection class
supports the additional properties and methods defined below.

7.9.5.1 Methods

void addParentalRatingaddParentalRatingaddParentalRatingaddParentalRating(String scheme, String name, Integer value,

 Integer labels, String region)

Description Creates a ParentalRating object instance for a given parental rating scheme and
parental rating value, and adds it to the ParentalRatingCollection for a
programme or channel.

Arguments scheme A unique string identifying the parental rating scheme to which this
value refers. See property scheme in Section 7.9.4.1 for more
information about possible values.

name A case-insensitive string representation of the parental rating
value. See property name in Section 7.9.4.1 for more information
about possible values.

value The parental rating value represented as an Integer. See property
value in Section 7.9.4.1 for more information about possible
values.

Page 149 (356)

 Copyright 2010 © Open IPTV Forum e.V.

labels A set of content rating labels that may provide additional
information about the rating. See property labels in Section
7.9.4.1 for more information about possible values.

region The region to which the parental rating value applies as case-
insensitive alpha-2 region code as defined in ISO 3166-1. Value
must be null or undefined if no specific region has been
identified.

7.10 Scheduled Recording APIs
This section describes the APIs needed to support control by a DAE application of the recording (PVR) functionality
available to an OITF, including time-shift support, scheduled recording and storage of basic metadata about recorded
items.

This section SHALL apply for OITFs that have indicated <recording> with value “true” as defined in Section
9.3.3 in its capability description.

7.10.1 The application/oipfRecordingScheduler embed ded object

The OITF SHALL support the scheduling of recordings of broadcasts through the use of the following non-visual
embedded object:

<object type=“application/oipfRecordingScheduler”/>

Note that the functionality in this section SHALL adhere to the security model as specified in Section 10.1.

7.10.1.1 Methods

ScheduledRecording recordrecordrecordrecord(Programme programme)

Description Requests the scheduler to schedule the recording of the programme identified by the
programmeID property of the programme. The other data contained in the programme
object is used solely for annotation of the (scheduled) recording. If such programme
metadata is provided, it is retained in the ScheduledRecording object that is
returned if the recording of the programme was scheduled successfully, reflecting the
possibility that not all relevant metadata might be available to the scheduler. If the
recording could not be scheduled due to a scheduling conflict or lack of resources the
value null is returned.

Note that the actual implementation of this method should enable the scheduler to
identify the domain of the service that issues the scheduling request in order to support
future retrieval of the scheduled recording through the getScheduledRecordings
method.

Arguments programme The programme to be recorded, as defined in 7.16.2.

ScheduledRecording recordAtrecordAtrecordAtrecordAt(Integer startTime, Integer duration, Integer
repeatDays, String channelID)

Description Requests the scheduler to schedule the recording of the broadcast to be received over
the channel identified by channelID, starting at startTime and continuing for
duration minutes. If the recording was scheduled successfully, the resulting
ScheduledRecording object is returned. If the recording could not be scheduled due
to a scheduling conflict or lack of resources the value null is returned.

Page 150 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Note that the actual implementation of this method should enable the scheduler to
identify the domain of the service that issues the scheduling request in order to support
future retrieval of the scheduled recording through the getScheduledRecordings
method.

Arguments startTime The start of the time period of the recording measured in seconds
since midnight (GMT) on 1/1/1970.

duration The duration of the recording in seconds.

repeatDays Bitfield indicating on which days of the week the recording SHOULD
be repeated. Values are as follows:

Day Bitfield Value

Sunday 0x01 (i.e. 00000001)

Monday 0x02 (i.e. 00000010)

Tuesday 0x04 (i.e. 00000100)

Wednesday 0x08 (i.e. 00001000)

Thursday 0x10 (i.e. 00010000)

Friday 0x20 (i.e. 00100000)

Saturday 0x40 (i.e. 01000000)

These bitfield values can be ‘OR’-ed together to repeat a recording
on more than one day of a week (e.g. weekdays)

A value of 0x00 indicates that the recording will not be repeated.

channelID The identifier of the channel from which the broadcasted content is
to be recorded. Specifies either a ccid or ipBroadcastID (as defined
by the Channel object in Section 7.13.12)

ScheduledRecordingCollection getScheduledRecordingsgetScheduledRecordingsgetScheduledRecordingsgetScheduledRecordings()

Description Returns a subset of all the recordings that are scheduled but which have not yet
started. The subset SHALL include only scheduled recordings that were scheduled
using a service from the same FQDN as the domain of the service that calls the
method.

ChannelConfig getChannelConfig()getChannelConfig()getChannelConfig()getChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as
defined in Section.7.13.8. This includes the favourite lists. The ChannelConfig object
returned from this function SHALL be identical to the ChannelConfig object returned
from the getChannelConfig() method on the video/broadcast object as defined in
7.13.3.

Page 151 (356)

 Copyright 2010 © Open IPTV Forum e.V.

void removeremoveremoveremove(ScheduledRecording recording)

Description Removes a scheduled recording.

As with the record method, only the programmeID property of the scheduled recording
SHALL be used to identify the scheduled recording to remove. The other data
contained in the scheduled recording SHALL NOT used when removing a scheduled
recording.

Arguments recording The scheduled recording to be removed.

Programme createProgrammeObjectcreateProgrammeObjectcreateProgrammeObjectcreateProgrammeObject()

Description Factory method to create an instance of Programme

7.10.2 The ScheduledRecording class

The ScheduledRecording object represents a scheduled programme in the system, i.e. a recording that is scheduled
but which has not yet started. . The values of the properties of a ScheduledRecording (except for startPadding
and endPadding) are provided when the object is created using one of the record() methods in Section 7.10.1, for
example by using a corresponding Programme object as argument for the record() method, and can not be changed
for this scheduled recording object (except for startPadding and endPadding).

7.10.2.1 Constants

The following constants are defined as properties of the ScheduledRecording class:

Name Value Use

ID_TVA_CRID 0 Used in the programmeIDType property to indicate that the programme is
identified by its TV-Anytime CRID (Content Reference Identifier).

ID_DVB_EVENT 1 Used in the programmeIDType property to indicate that the programme is
identified by a DVB URL referencing a DVB-SI event as enabled by Section
4.1.3 of [OIPF_META2]. Support for this constant is OPTIONAL.

7.10.2.2 Properties

Integer startPaddingstartPaddingstartPaddingstartPadding

The amount of padding to add at the start of a scheduled recording, in seconds. This property is
initialised to the value of the Configuration.pvrStartPadding property. The default OITF defined
start padding MAY be changed through property pvrStartPadding of the Configuration class as
defined in Section 7.3.2.

Integer endPaddingendPaddingendPaddingendPadding

The amount of padding to add at the end of a scheduled recording, in seconds. This property is

Page 152 (356)

 Copyright 2010 © Open IPTV Forum e.V.

initialised to the value of the Configuration.pvrEndPadding property. The default OITF defined
end padding MAY be changed through property pvrEndPadding of the Configuration class as
defined in Section 7.3.2.

readonly Integer repeatDaysrepeatDaysrepeatDaysrepeatDays

Bitfield indicating on which days of the week the recording SHOULD be repeated. Values are as
follows:

Day Bitfield Value

Sunday 0x01 (i.e. 00000001)

Monday 0x02 (i.e. 00000010)

Tuesday 0x04 (i.e. 00000100)

Wednesday 0x08 (i.e. 00001000)

Thursday 0x10 (i.e. 00010000)

Friday 0x20 (i.e. 00100000)

Saturday 0x40 (i.e. 01000000)

These bitfield values can be ‘OR’-ed together to repeat a recording on more than one day of a week
(e.g. weekdays)

A value of 0x00 indicates that the recording will not be repeated.

For recordings other than those created using the recordAt() method, the value of this property
SHALL be undefined.

readonly String namenamenamename

The short name of the scheduled recording, e.g. 'Star Trek: DS9'.

readonly String longNamelongNamelongNamelongName

The long name of the scheduled recording, e.g. 'Star Trek: Deep Space Nine'. If the long name is not
available, this property will be undefined.

readonly String dedededescriptionscriptionscriptionscription

The description of the scheduled recording, e.g. an episode synopsis. If no description is available, this
property will be undefined.

readonly String longDescriptionlongDescriptionlongDescriptionlongDescription

Page 153 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The long description of the programme. If no description is available, this property will be undefined.

readonly Integer startTimestartTimestartTimestartTime

The start time of the scheduled recording, measured in seconds since midnight (GMT) on 1/1/1970.
The value for the startPadding property can be used to indicate if the recording has to be started
before the startTime (as defined by the Programme class).

readonly Integer durationdurationdurationduration

The duration of the scheduled recording (in seconds). The value for the endPadding property can be
used to indicate how long the recording has to be continued after the specified duration of the
recording.

readonly Channel channelchannelchannelchannel

Reference to the broadcast channel where the scheduled programme is available.

readonly Boolean isSeriesisSeriesisSeriesisSeries

If true, then when a subsequent episode of a programme becomes available it SHOULD be added to
the recording list automatically.

Note: Where several episodes of a season are available, then only the latest scheduled recording will
carry the isSeries flag.

readonly String programmeIDprogrammeIDprogrammeIDprogrammeID

The unique identifier of the scheduled programme or series, e.g. a TV-Anytime CRID (Content
Reference Identifier).

readonly Integer programmeIDTypeprogrammeIDTypeprogrammeIDTypeprogrammeIDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined in Section 7.10.2.1.

readonly Integer episodeepisodeepisodeepisode

The episode number for the programme if it is part of a series. This property is undefined when the
programme is not part of a series or the information is not available.

readonly Integer totalEpisodestotalEpisodestotalEpisodestotalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is
undefined when the programme is not part of a series or the information is not available.

Page 154 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly ParentalRatingCollection parentalRatingparentalRatingparentalRatingparentalRating

A collection of parental rating values for the programme for zero or more parental rating schemes
supported by the OITF. The value of this property is typically provided by a corresponding
“Programme” object that is used to schedule the recording and can not be changed for this scheduled
recording object. If no parental rating information is available for this scheduled recording, this property
is a ParentalRatingCollection object (as defined in Section 7.9.5) with length 0.

Note that if the parentalRating property contains a certain parental rating (e.g. PG-13) and the
broadcast channel associated with this scheduled recording has metadata that says that the content is
rated PG-16, then the conflict resolution is implementation dependent.

7.10.3 The ScheduledRecordingCollection class

typedef Collection<ScheduledRecording> ScheduledRecordingCollection

The ScheduledRecordingCollection class represents a collection of ScheduledRecording objects. See annex
K for the definition of the collection template.

7.10.4 Extension to application/oipfRecordingSchedu ler for control of
recordings

The OITF SHALL support the following extensions to the application/oipfRecordingScheduler object
defined in Section 7.10.1.

This subsection SHALL apply for OITFs that have indicated support for the extended PVR management functionality by
adding the attribute 'manageRecordings = true' to the <recording> element in the client capability description
as defined in Section 9.3.3

The functionality as described in this section is subject to the security model of Section 10.

7.10.4.1 Properties

readonly ScheduledRecordingCollection recordingsrecordingsrecordingsrecordings

Provides a list of scheduled and recorded programmes in the system. This property may only provide
access to a subset of the full list of recordings, as determined by the value of the manageRecordings
attribute of the <recording> element in the client capability description (see Section 9.3.3).

Note: Where a series is being recorded, every recorded episode SHALL exist as an independent entry.
Only the scheduled recording SHALL carry the isSeries property.

readonly DiscInfo discInfodiscInfodiscInfodiscInfo

Get information about the status of the local storage device. The DiscInfo class is defined in Section
7.16.4.

function onPVREventonPVREventonPVREventonPVREvent(Integer state, Recording recording)

This function is the DOM 0 event handler for notification of changes in the state of recordings. See the

Page 155 (356)

 Copyright 2010 © Open IPTV Forum e.V.

definition of the corresponding DOM 2 PVREvent in Section 1.1.1 for more details.

The specified function is called with the following arguments:

• Integer state – The current state of the recording. One of:

Value Description

1 The recording has started.

2 The recording has stopped, having completed.

3 The recording sub-system is unable to record due to resource limitations.

4 There is insufficient storage space available. (Some of the recording may be available).

6 The recording has stopped before completion due to unknown (probably hardware) failure.

7 The recording has been newly scheduled.

8 The recording has been deleted (for complete or in-progress recordings) or removed from the
schedule (for scheduled recordings).

9 The recording is due to start in a short time.

10 The recording has been updated.

• ScheduledRecording recording – The recording to which this event refers.

7.10.4.2 Methods

Recording getRecordinggetRecordinggetRecordinggetRecording(String id)

Description Returns the Recording object for which the value of the Recording.id property
corresponds to the given id parameter. If such a Recording does not exist, the
method returns null.

Arguments id Identifier corresponding to the id property of a Recording object.

void removeremoveremoveremove (ScheduledRecording recording)

Description Remove a recording (either scheduled, in-progress or completed).

For non-privileged applications, recordings SHALL only be removed when they are
scheduled but not yet started and the recording was scheduled by the current service.

If the A/V Control object is referring to the indicated recording the state in A/V Control
object shall be automatically changed to 6 (the error state).

Arguments recording The recording to be removed.

Page 156 (356)

 Copyright 2010 © Open IPTV Forum e.V.

void stopstopstopstop(Recording recording)

Description Stop an in-progress recording. The recording SHALL NOT be deleted.

Arguments recording The recording to be stopped.

void refreshrefreshrefreshrefresh()

Description Update the recordings property to show the current status of all recordings.

7.10.4.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onPVREvent PVREvent Bubbles: No

Cancelable: No

Context Info: state, recording

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Remote UIs
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Remote UIs that use DOM 2
event handlers SHALL call the addEventListener() method on the
application/oipfScheduledRecording object itself. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

7.10.5 The Recording class

The Recording class represents an in-progress or completed recording being made available through the extended
PVR management functionality as defined in Section 7.10.4. This class implements the ScheduledRecording
interface (see Section 7.10.2).

Recordings MAY be “manual” in that they simply record a channel at a certain time, for a period - analogous to a
traditional VCR - or alternatively recordings can be programme based.

Values of properties in the Recording object SHALL be obtained from metadata about the recorded programme and
are typically copied from the Programme used for scheduling a recording by the record(Programme programme)
method of the application/oipfRecordingScheduler object. See Section 7.10.4 for more information about the
mapping between the properties of a Programme and the BCG metadata.

7.10.5.1 Properties

readonly Integer statestatestatestate

The state of the recording. One of:

Page 157 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Value Description

1 The recording has started.

2 The recording has stopped, having completed.

3 The recording sub -system is unable to record due to resource limitations.

4 There is insufficient storage space available. (Some of the recording may be available).

5 The recording has not taken place due to unknown (probably hardware) failure.

6 The recording has only partially completed due to a clash or hardware failure. There are
three possible conditions for this:

1) The end of the recording is missed.

2) The start of the recording is missed.

3) A piece from the centre of the recording is missed (e.g. due to the receiver rebooting or a
transient failure of the network connection).

readonly String idididid

An identifier for this recording. This value SHALL be unique to this recording and so can be used to
compare two recording objects to see if they refer to the same recording. The OITF SHALL guarantee
that recording identifiers are unique in relation to download identifiers and CODAsset identifiers.

readonly Boolean isManualisManualisManualisManual

If false, then any fields whose name matches a field in the Programme object contains details from the
programme guide on the programme that has been recorded.

If true, only the channel, start time and duration of the recording are valid.

Boolean doNotDeletedoNotDeletedoNotDeletedoNotDelete

If true, then this recording should not be automatically deleted by the system.

Integer saveDayssaveDayssaveDayssaveDays

The number of days for which an individual or manual recording SHOULD be saved. Recordings older
than this value MAY be deleted. This property is initialised to the value of the
Configuration.pvrSaveDays property.

Integer saveEpisodessaveEpisodessaveEpisodessaveEpisodes

Page 158 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The number of episodes of a series-link that SHOULD be saved. Older episodes MAY be deleted. This
is only valid when set on the latest scheduled recording in the series. This property is initialised to the
value of the Configuration.pvrSaveEpisodes property.

readonly Boolean blockedblockedblockedblocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

readonly ParentalRatingCollection parentalRatingparentalRatingparentalRatingparentalRatingssss

A collection of parental rating values for the programme for zero or more parental rating schemes
supported by the OITF, defined using the ParentalRatingCollection object as specified in Section
7.9.5. If no parental rating information is available for this scheduled recording, this property is a
ParentalRatingCollection object with length 0.

Note that if the parentalRatings property contains a certain parental rating (e.g. PG-13) and the
broadcast channel associated with this scheduled recording has metadata that says that the content is
rated PG-16, then the conflict resolution is implementation dependent.

readonly Integer showTypeshowTypeshowTypeshowType

Flag indicating the type of show. This field SHALL take one of the following values:

Value Description

0 The show is live.

1 The show is a first-run show.

2 The show is a rerun.

readonly Boolean subtitlessubtitlessubtitlessubtitles

Flag indicating whether subtitles or closed-caption information is available.

readonly StringCollection subtitleLanguagessubtitleLanguagessubtitleLanguagessubtitleLanguages

Supported subtitle languages, indicated by iso639 language codes.

readonly Boolean isHDisHDisHDisHD

Flag indicating whether the programme has high-definition video.

Page 159 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Boolean isWidescreenisWidescreenisWidescreenisWidescreen

Flag indicating whether the programme is broadcast in widescreen.

readonly Integer audioTypeaudioTypeaudioTypeaudioType

Bitfield indicating the type of audio that is available for the programme. Since more than one type of
audio may be available for a given programme, the value of this field SHALL consist of one or more of
the following values ORed together:

Value Description

1 Mono audio

2 Stereo audio

4 Multi-channel audio

readonly Boolean isMultilingualisMultilingualisMultilingualisMultilingual

Flag indicating whether more than one audio language is available for this recording.

readonly StringCollection audioLanguagesaudioLanguagesaudioLanguagesaudioLanguages

Supported audio languages, indicated by iso639 language codes.

readonly StringCollection genresgenresgenresgenres

A collection of genres that describe this programme.

readonly Integer recordingStartTimerecordingStartTimerecordingStartTimerecordingStartTime

The actual start time of the recording, including any padding. This MAY not be the same as the
scheduled start time of the recorded programme (e.g. due to a recording starting late, or due to
start/end padding).

readonly Integer recordingDurationrecordingDurationrecordingDurationrecordingDuration

The actual duration of the recording, including any padding. This MAY not be the same as the
scheduled duration of the recording (e.g. due to a recording finishing early, or due to start/end padding).

readonly BookmarkCollection bookmarksbookmarksbookmarksbookmarks

A collection of the bookmarks set in a recording. If no bookmarks are set, the collection SHALL be

Page 160 (356)

 Copyright 2010 © Open IPTV Forum e.V.

empty.

readonly Boolean lockedlockedlockedlocked

Flag indicating whether the current state of the parental control system prevents the recording from
being viewed (e.g. a correct parental control PIN has not been entered to allow the recording to be
viewed).

7.10.6 The RecordingCollection class

typedef Collection<Recording> RecordingCollection

The RecordingCollection class represents a collection of Recording objects. See annex K for the definition of
the collection template.

7.10.7 The Bookmark class

The Bookmark class represents a bookmark or chapter mark in a recording or CoD asset. This is not a web bookmark –
instead, it is a point from which the viewer may want to resume playback of a piece of content. These MAY be set
implicitly without user intervention (e.g. at the point where a user stops watching a recording, in order to allow them to
resume from that point later) or explicitly by the user (e.g. at the start of a favourite scene).

7.10.7.1 Properties

readonly Integer timetimetimetime

The time at which the bookmark is set, in seconds from the start of the content item.

readonly String namenamenamename

The name of the bookmark.

7.10.8 The BookmarkCollection class

typedef Collection<Bookmark> BookmarkCollection

A BookmarkCollection is a collection of bookmarks, ordered by time. See annex K for the definition of the
collection template. In addition to the methods and properties defined for generic collections, the
BookmarkCollection class supports the additional properties and methods defined below.

NOTE: In principle bookmarks MAY be stored on in the network however the protocol for communicating bookmarks
between the OITF and the network is not defined in the present document.

7.10.8.1 Methods

Bookmark addBookmarkaddBookmarkaddBookmarkaddBookmark(Integer time, String name)

Page 161 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description Add a new bookmark to the collection. If the bookmark cannot be added (e.g.
because the value given for time lies outside the length of the recording), this method
SHALL return null.

Arguments time The time at which the bookmark is set, in seconds since the start of
the recording.

Arguments name The name of the bookmark.

void removeBookmarkremoveBookmarkremoveBookmarkremoveBookmark(Bookmark bookmark)

Description Remove a bookmark from the collection.

Arguments bookmark The bookmark to be removed.

7.11 Remote Management APIs
This section defines interfaces to perform remote diagnostics and management of the device.

Browser based remote management SHALL be supported by OITFs that have indicated
<remote_diagnostics>true</remote_diagnostics> in their capability profile (as defined in Section 9.3.12)

7.11.1 The application/oipfRemoteManagement embedde d object

The application/oipfRemoteManagement embedded object has the following properties and methods.

Access to the functionality of the application/oipfRemoteManagement embedded object SHALL adhere to the
security requirements as defined in Section 10.

7.11.1.1 Properties

readonly String vendorNamevendorNamevendorNamevendorName

String identifying the vendor name of the device. The value of this property SHALL be the same as the
value of the LocalSystem.vendorName property (see section 7.3.3.2).

readonly String modelNamemodelNamemodelNamemodelName

String identifying the model name of the device. The value of this property SHALL be the same as the
value of the LocalSystem.modelName property (see section 7.3.3.2).

readonly String softwareVersionsoftwareVersionsoftwareVersionsoftwareVersion

String identifying the version number of the platform firmware. The value of this property SHALL be the
same as the value of the LocalSystem.softwareVersion property (see section 7.3.3.2).

readonly String hardwareVersionhardwareVersionhardwareVersionhardwareVersion

String identifying the version number of the platform hardware. The value of this property SHALL be

Page 162 (356)

 Copyright 2010 © Open IPTV Forum e.V.

the same as the value of the LocalSystem.hardwareVersion property (see section 7.3.3.2).

7.11.1.2 Methods

String getParametergetParametergetParametergetParameter(String parameterName)

Description Returns the requested parameter.

Arguments parameterName “SAMPLE_PACKET_LOSS”: This queries the RTP packet loss since
the last call to this function, or the start of the current RTP
content item, whichever is more recent. The returned string is of
the format “<time in milliseconds since the last sample> <fraction
lost> <number of packets lost>”. These fields (i.e. <xxx>) are
defined as described in Section 6.4.2 of [RFC3550] and are
decimal numbers (encoded as strings). If no content item is
playing an empty string is returned.

“SAMPLE_DECODER_ERRORS”: This queries the decoder errors
since the last call to this function, or the start of the current RTP
content item, whichever is more recent. The returned string is of
the format “<time in milliseconds since the sample> <total
number of frames decoded> <total number of errors>”. These
fields are decimal numbers (encoded as strings). If no content
item is playing an empty string is returned.

“CUMULATIVE_PACKET_LOSS”: This queries the RTP packet loss
since the start of the current RTP content item. The returned
string is of the format “<time in milliseconds of this sample within
the content> <fraction lost> <number of packets lost>”. These
fields (i.e. <xxx>) are defined as described in Section 6.4.2 of
[RFC3550] and are decimal numbers (encoded as strings). If no
content item is playing an empty string is returned.

“CUMULATIVE_DECODER_ERRORS”: This queries the decoder
errors since the start of the current RTP content item, whichever
is more recent. The returned string is of the format “<time in
milliseconds of this sample within the content> <total number of
frames decoded> <total number of errors>”. These fields are
decimal numbers (encoded as strings). If no content item is
playing an empty string is returned.

Optionally, further vendor specific parameters may be supported.

In the case that a parameter is requested that a device does not
support, it SHALL return an empty string.

String setParametersetParametersetParametersetParameter(String parameterName, String value)

Description Sets the requested parameter. Support for this API is optional.

Arguments parameterName The name of the parameter.

value The value of the parameter.

Page 163 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Integer triggerSoftwareUpdatetriggerSoftwareUpdatetriggerSoftwareUpdatetriggerSoftwareUpdate(String token)

Description Triggers an OITF to start its software update process. The process itself and any user
involvement (e.g. to confirm agreement for a software update) is not defined. The
method SHALL block until it can be determined if there’s an update which will be
applied. The mechanism by which this is determined is outside the scope of this
specification. Downloading and application of any updates SHALL be performed
asynchronously. The returned integer is a result code that can take the following
values:

Result
message

Description Semantics

0 Successful The request is successful and the device
software will be updated.

1 Unknown error triggerSoftwareUpdate() failed because
an unspecified error occurred.

2 Invalid token triggerSoftwareUpdate() failed because
the token is not valid.

3 No update
available

triggerSoftwareUpdate() failed, because
no update exists.

Arguments token An optional token string used to assist in the
software update process. The token may be
used to transfer credentials information to control
the software update.

7.12 Metadata APIs
This section defines the Javascript APIs used by DAE applications for reading and searching metadata about programmes
and channels. This API does not specify whether these query operations are carried out on the OITF or whether they
require communication with a server.

The metadata API provides DAE applications with high-level access to metadata about programmes and channels. This
document describes the mapping between this API and CoD and programme guide metadata. Mappings between this
API and other metadata sources are not specified in this document.

This section SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a type attribute
with value “bcg” or “dvb-si” as defined in Section 9.3.7 in their capability profile.

Note that in order to access the metadata of programmes and channels several extensions to the Programme and
Channel classes have been defined when the OITF has indicated support for <clientMetadata>. See sections
7.16.2.3 and 7.13.12.3 for more information).

The functionality as described in this section is subject to the security model of Section 10 (in particular Section
10.1.4.6).

7.12.1 The application/oipfSearchManager embedded o bject

OITFs SHALL implement the “application/oipfSearchManager” embedded object. This object provides a
mechanism for applications to create and manage metadata searches.

The following example shows how a metadata search can be constructed and executed:

// Event handler function for asynchronous search results

Page 164 (356)

 Copyright 2010 © Open IPTV Forum e.V.

function handleSearchResults() {
 if ((state == 0) || (state ==1)) {
 //more results are available, or our search has finished

 // update the results. Doing this asynchronously means
 // that if we’re working with the current set of results,
 // we get the new results when it suits the application.
 search.results.update();

 // do stuff with the results
 var myResult = search.results[0];

 //get the next page of results
 search.results.getResults(10, 20);
 }
}

// Function that creates and starts a search
function doSearch() {

 // create a new search for on-demand content
 mySearchManager = document.getElementById(“searchManager”);
 mySearch = mySearchmanager.createSearch(2);

 // search for any programme with “space” in the title as a word
 // or part of a word
 myQuery = mySearch.createQuery(
 “urn:tva:transport:fieldIDs:2002:Title”,
 6,
 “space”);
 mySearch.setQuery(myQuery);

 // return results alphabetically by title
 mySearch.orderBy(“urn:tva:transport:fieldIDs:2002:Title”, true);

 mySearchManager.onMetadataSearch = handleSearchResults;

 if (mySearch.results.getResults(0, 10)) {
 // some results are available immediately, e.g. because
 // they were cached

 // do stuff with the results
 var myResult = mySearch.results[0];
 }
}

7.12.1.1 Properties

readonly Integer guideDaysAvailableguideDaysAvailableguideDaysAvailableguideDaysAvailable

The number of days for which guide data is available. A value of -1 means that the amount of guide
data available is unknown.

function onMetadataUpdateonMetadataUpdateonMetadataUpdateonMetadataUpdate(In(In(In(Integer action, Integer info, Object object)teger action, Integer info, Object object)teger action, Integer info, Object object)teger action, Integer info, Object object)

This function is the DOM 0 event handler for events indicating changes in metadata. This SHALL be
raised when changes to the parental control settings change the lock status of an item, or when a new
version of the metadata becomes available. The specified function is called with the arguments action,
info and object. These arguments are defined as follows:

Number action – the type of update that has taken place. This field will take one of the following values:

Value Description

1 A new version of metadata is available (see clause 4.1.2.1.2 of
[META]) or and applications SHOULD discard all references to

Page 165 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Programme objects immediately and re-acquire them.

2 A change to the parental control flags for a content item has
occurred (e.g. the user has unlocked the parental control features
of the receiver, allowing a blocked item to be played).

3 A flag affecting the filtering criteria of a channel has changed.
Applications MAY listen for events with this action code to update
lists of favourite channels, for instance.

Number info – extended information about the type of update that has taken place. If the action
argument is set to the value 4, the value of this field SHALL be one or more of the following:

Value Description

1 The list of blocked channels has changed.

2 A list of favourite channels has changed.

4 The list of hidden channels has changed.

If the action argument is set to the value 3, the value of this field SHALL be one or more of:

Value Description

1 The block status of a content item has changed.

2 The lock status of a content item has changed.

This field is treated as a bitfield, so values MAY be combined to allow multiple reasons to be passed.

Object object – the affected channel, programme, or CoD asset. If more than one is affected, then this
argument SHALL take the value null.

function onMetadataSearchonMetadataSearchonMetadataSearchonMetadataSearch(MetadataSearch search, Integer state)(MetadataSearch search, Integer state)(MetadataSearch search, Integer state)(MetadataSearch search, Integer state)

This function is the DOM 0 event handler for events relating to metadata searches. The specified
function is called with the arguments search and state. These arguments are defined as follows:

MetadataSearch search – the affected search

Number state – the new state of the search

Value Description

0 Search has finished. This event SHALL be generated when a
search has completed or been aborted.

1 More search results are available. Calling update() on the
SearchResults object SHALL update the list of results to
include the newly-retrieved data.

Page 166 (356)

 Copyright 2010 © Open IPTV Forum e.V.

2 The data returned by the search is no longer valid, e.g. because
of a change in the metadata. Applications that still require the
data SHALL repeat the search.

7.12.1.2 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onMetadataSearch MetadataSearch Bubbles: No

Cancelable: No

Context Info: search, state

onMetadataUpdate MetadataUpdate Bubbles: No

Cancelable: No

Context Info: action, info, object

These events are targeted at the application/oipfSearchManager object.

7.12.1.3 Methods

MetadataSearch createSearchcreateSearchcreateSearchcreateSearch(Integer searchTarget)

Description Create a MetadataSearch object that can be used to search the metadata.

Arguments searchTar
get

The metadata that should be searched.

Valid values of the searchTarget parameter are:

Value Description

1 Metadata relating to scheduled content shall be
searched.

2 Metadata relating to content on demand shall be
searched.

These values are treated as a bitfield, allowing searches to be carried
out across multiple search targets.

ChannelConfig getChannelConfiggetChannelConfiggetChannelConfiggetChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as

Page 167 (356)

 Copyright 2010 © Open IPTV Forum e.V.

defined in Section 7.13.8. This includes the favourite lists. The ChannelConfig object
returned from this function SHALL be identical to the ChannelConfig object returned
from the getChannelConfig() method on the video/broadcast object as defined in
7.13.3.

7.12.2 The MetadataSearch class

A MetadataSearch object represents a query of the BCG and SD&S metadata about available programmes.
Applications can create MetadataSearch objects using the createSearch() method on the
application/oipfSearchManager object. When metadata queries are performed on a remote server, the protocol
used is defined in section 4.1.2.2 of [OIPF_META2].

Changes to constraints or the ordering of search results SHALL be applied when the getResults() method on the
corresponding SearchResults object is called.

Due to the nature of metadata queries, searches are asynchronous and events are used to notify the application that results
are available. MetadataSearchEvents SHALL be targeted at the application/oipfSearchManager object.

To minimise race conditions, results are updated on request rather than dynamically. Upon receipt of a
MetadataSearchEvent indicating that more results are available, applications SHALL call update() on the
corresponding SearchResults object to get the new results.

7.12.2.1 Properties

readonly Integer searchTargetsearchTargetsearchTargetsearchTarget

 The target(s) of the search. Valid values of the searchTarget parameter are:

Value Description

1 Metadata relating to scheduled content SHALL be searched.

2 Metadata relating to on-demand content SHALL be searched.

These values SHALL be treated as a bitfield, allowing searches to be carried out across multiple search
targets.

Query queryqueryqueryquery

The query that will be carried out by this search.

readonly SearchResults resultresultresultresult

The results found so far.

The values within result MAY change after subsequent calls to its update() method.

7.12.2.2 Methods

void setQuerysetQuerysetQuerysetQuery(Query query)

Page 168 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description Set the query terms to be used for this search, discarding any previously-set query
terms. Calling this method when a search is in progress SHALL:

1. Abort any outstanding requests for results (equivalent to calling
results.abort()).

2. Invalidate any existing search results and dispatch a MetadataSearch event with
a value of 2 for the state argument.

Arguments Query The query terms to be used

void addRatingConstraddRatingConstraddRatingConstraddRatingConstraintaintaintaint(ParentalRatingScheme scheme, Integer threshold)

Description Constrain the search to only include results whose parental rating value is below the
specified threshold.

Arguments scheme The parental rating scheme upon which the constraint SHALL be
based. If the value of this argument is null, any existing parental
rating constraints SHALL be cleared.

threshold The threshold above which results SHALL NOT be returned. If the
value of this argument is null, any existing constraint for the
specified parental rating scheme SHALL be cleared.

void addCurrentRatingConstraintaddCurrentRatingConstraintaddCurrentRatingConstraintaddCurrentRatingConstraint()

Description Constrain the search to only include results whose parental rating value is below the
threshold currently set by the user.

void addChannelConstraintaddChannelConstraintaddChannelConstraintaddChannelConstraint(ChannelList channels)

Description Constrain the search to only include results from the specified channels. If a channel
constraint has already been set, subsequent calls to
addChannelConstraint()SHALL add the specified channels to the list of channels
from which results should be returned.

For CoD searches, adding a channel constraint SHALL have no effect.

Arguments channels The channels from which results SHALL be returned. If the value
of this argument is null, any existing channel constraint SHALL
be removed.

void addChannelConstraintaddChannelConstraintaddChannelConstraintaddChannelConstraint(Channel channel)

Description Constrain the search to only include results from the specified channel. If a channel
constraint has already been set, subsequent calls to addChannelConstraint()
SHALL add the specified channel to the list of channels from which results should be
returned.

For CoD searches, adding a channel constraint SHALL have no effect.

Page 169 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Arguments channel The channel from which results SHALL be returned. If the value of
this argument is null, any existing channel constraint SHALL be
removed.

void orderByorderByorderByorderBy(String field, Boolean ascending)

Description Set the order in which results SHOULD be returned in future. Any existing search
results SHALL not be re-ordered. Subsequent calls to orderBy() will apply further
levels of ordering within the order defined by previous calls. For example:

 orderBy(“ServiceName”, true);
 orderBy(“PublishedStart”, true);

will cause results to be ordered by service name and then by start time for results
with the same channel number.

Arguments field The name of the field by which results SHOULD be sorted. A
value of null indicates that any currently-set order SHALL be
cleared and the default sort order should be used.

ascending Flag indicating whether the results SHOULD be returned in
ascending or descending order.

Query createQuerycreateQuerycreateQuerycreateQuery(String field, Integer comparison, String value)

Description Create a metadata query for a specific value in a specific field within the metadata.
Simple queries MAY be combined to create more complex queries. Applications
SHALL follow the ECMAScript type conversion rules to convert non-string values into
their string representation, if necessary.

Arguments field The name of the field to compare. Fields are identified by the
fieldIDs defined in annex B.2 of [TVA-BID], or using simplified
XPath notation. The '/' operator is the only permitted XPath
operator.

comparison The type of comparison. One of:

Value Description

0 True if the specified value is equal to the value of
the specified field.

1 True if the specified value is not equal to the value
of the specified field.

2 True if the value of the specified field is greater
than the specified value.

3 True if the value of the specified field is greater
than or equal to the specified value.

4 True if the value of the specified field is less than
the specified value.

5 True if the value of the specified field is less than
or equal to the specified value.

Page 170 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6 True if the string value of the specified field
contains the specified value. This operation
SHALL be case insensitive, and SHALL match
parts of a word as well as whole words (e.g. a
value of “term” will match a field value of
“Terminator”).

7 True if the specified field exists.

value The value to check. Applications SHALL follow the ECMAScript
type conversion rules to convert non-string values into their string
representation, if necessary

void findProgrammesFromStreamfindProgrammesFromStreamfindProgrammesFromStreamfindProgrammesFromStream(Channel channel, Integer startTime, Integer
count)

Description Retrieve guide data for a specified number of programmes from a given channel from
metadata contained in the stream as defined in section 4.1.3 of [OIPF_META2].
Searches made using this method will implicitly remove any existing constraints,
ordering or queries created by prior calls to methods on this object.

Arguments channel The channel for which programme information should be found.

startTime The start of the time period for which results should be returned
measured in seconds since midnight (GMT) on 1/1/1970. The start time
is inclusive; any programmes starting at the start time, or which are
showing at the start time, will be included in the search results. If null,
the search will start from the current time.

count The number of programmes for which information should be returned.

7.12.3 The Query class

The Query class represents a metadata query that the user wants to carry out. This may be a simple search, or a complex
search involving Boolean logic. Queries are immutable; an operation on a query SHALL return a new Query object,
allowing applications to continue referring to the original query.

The examples below show how more complex queries can be constructed:

Query qa = mySearch.createQuery("Title", 6, "Terminator");
Query qb = mySearch.createQuery ("SpokenLanguage", 0, "fr-CA");
Query qc = qb.and(qa.negate());

7.12.3.1 Methods

Query andandandand(Query query)

Description Create a query based on the logical AND of the predicates represented by the current
query and the argument query.

Arguments query The second predicate for the AND operation.

Page 171 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Query orororor(Query query)

Description Create a query based on the logical OR of the predicates represented by the current
query and the argument query.

Arguments query The second predicate for the OR operation.

Query notnotnotnot()

Description Create a new query that is the logical negation of the current query.

7.12.4 The SearchResults class

The SearchResults class represents the results of a metadata search. Since the result set may contain a large number
of items, applications request a ‘window’ on to the result set, similar to the functionality provided by the OFFSET and
LIMIT clauses in SQL.

Applications MAY request the contents of the result in groups of an arbitrary size, based on an offset from the beginning
of the result set. The data SHALL be fetched from the appropriate source, and application SHALL be notified when the
data is available.

Next to the properties and methods defined below a SearchResults object SHALL support the array notation to
access the results in this collection.

7.12.4.1 Properties

readonly Integer lengthlengthlengthlength

The number of items in the currently available results. If results are fetched asynchronously, the value
of this property SHALL be zero until after update() has been called.

readonly Integer offsetoffsetoffsetoffset

The current offset into the total result set.

readonly Integer totalSizetotalSizetotalSizetotalSize

The total number of items in the result set. If results are fetched asynchronously, the value of this
property SHALL be undefined until getResults() has been called and a MetadataSearchEvent
notifying the application that results are available has been dispatched.

7.12.4.2 Methods

Object itemitemitemitem(Integer index)

Description Return the item at position index in the collection of currently available results, or

Page 172 (356)

 Copyright 2010 © Open IPTV Forum e.V.

undefined if no item is present at that position. This function SHALL only return
objects that are instances of Programme when searching metadata for scheduled
content, or CODAsset, CODFolder, or CODService when searching CoD metadata

Arguments index The index into the result set.

Boolean getResulgetResulgetResulgetResultstststs(Integer offset, Integer count)

Description Perform the search and retrieve a subset of the items that match the query.

Results MAY be returned both synchronously and asynchronously, depending on
whether data is available from the cache. If getResults() returns false, results
are not available until the notification events have been returned and update() has
been called. If getResults() returns true, results are available immediately, and
the application need not wait for MetadataSearchEvents indicating that results are
available or call update() to obtain the results.

For results returned as a result of the same call to getResults(), the full result set
may build up over time – the availability of new entries in the result set will be
indicated by notification events. Subsequent calls to getResults() will clear the
result set, so only results fetched for the most recent call to getResults() will be
available to applications.

Arguments offset The number of items at the start of the result set to be skipped before
data is retrieved.

count The number of results to retrieve.

void abortabortabortabort()

Description Abort any outstanding request for results. Items currently in the collection SHALL be
removed (i.e. the value of the length property SHALL be 0 and any calls to
item()SHALL return undefined).

void updateupdateupdateupdate()

Description Through the update method new results are made available to applications. When a
call to getResults() has returned false and results are fetched asynchronously, this
method must be called after an application has received a notification event informing
it that new results are available. The results may be delivered over multiple
notification events.

Until this method is called, results returned by asynchronous requests SHALL NOT
be available to applications. This ensures that applications have a consistent view of
the available results, without the result set changing asynchronously. This enables
applications to (for example) iterate over the current result set and update their UI
before retrieving the new results which have been returned to the OITF but are not
yet available to applications.

Page 173 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13 Scheduled content and hybrid tuner APIs
This section SHALL apply to OITFs that have indicated support for tuner control (i.e.
<video_broadcast>true</video_broadcast> as defined in Section 9.3.1) in their capability. It describes the
video/broadcast embedded object needed to support display and control by a DAE application of scheduled content
received over local tuner functionality available to an OITF, including the conveyance of the channel list to the server.
The term “tuner” is used here to identify a piece of functionality to enable switching between different types of scheduled
content services that are identified through logical channels. This includes IP broadcast channels, as well as traditional
broadcast channels received over a hybrid tuner.

7.13.1 The video/broadcast embedded object

The OITF SHALL support the video/broadcast embedded object with the following properties and methods, which
SHALL adhere to the tuner related security requirements in Section 10.1.4.1. The MIME type of this object SHALL be
“video/broadcast”.

7.13.1.1 State diagram for video/broadcast objects

The state diagram below shows the states that a video/broadcast object may be in. Dashed lines indicate automatic
transitions between states. The video/broadcast object SHALL be in the unrealized state when it is instantiated.

Unrealized

Presenting

Connecting

setChannel()

nextChannel()

prevChannel()

setChannel()

nextChannel()

prevChannel()

permanent

error

transient

error

Stopped

stop()

release()

setChannel(null)

stop()

bindToCurrent

Channel()

bindTo

Current

Channel()

Figure 15: State diagram for embedded video/broadcastvideo/broadcastvideo/broadcastvideo/broadcast objects.

When the setChannel(), nextChannel() or prevChannel() method is called from the unrealized,
connecting or presenting states, the object shall transition to the connecting state, in which the terminal
attempts to connect to the broadcast stream. If setChannel() is called with a null parameter, the object shall transition
to the unrealized state.

Page 174 (356)

 Copyright 2010 © Open IPTV Forum e.V.

This may mean connecting to an IP multicast stream or tuning to a new transport stream and demultiplexing appropriate
sub-streams. When this has completed and media is being presented, the object transitions automatically to the
presenting state.

When the bindToCurrentChannel() method is called from the unrealized or stopped states, the object shall
transition directly to the presenting state.

If the channel currently being presented changes due to an action outside the application (for example, the user pressing
the CH+ key on the remote) then any video/broadcast object presenting that channel (e.g. as the result of a call to
bindToCurrentChannel()) SHALL perform the same state transitions and dispatch the same events as if the
channel change operation was initiated by the application.

Scarce resources such as media decoders SHALL be claimed either during the connecting state, or during the
transition from the connecting to the presenting states. Resources SHALL be released when the
video/broadcast object transitions to the unrealized state. Transitioning from the presenting to the
connecting state SHOULD NOT cause scarce resources to be released.

During media presentation, transient errors (e.g. transient errors in the bitstream, temporary loss of signal or temporary
halting of media decoding due to parental control issues) MAY cause the object to transition from the presenting state
to the connecting state. Temporary loss of resources due to presentation being interrupted by playback of audio from
memory MAY cause the object to transition from the presenting state to the connecting state. Permanent errors
(e.g. loss of scarce resources or DRM errors) or calls to release() SHALL cause the object to transition to the
unrealized state regardless of its current state.

Calling the stop() method SHALL stop video and audio presentation and cause the video/broadcast object to transition
to the stopped state. This SHALL have no effect on access to non-media broadcast resources such as EIT information.
Calling the bindToCurrentChannel() method while in the stopped state SHALL result in video and audio
presentation being restarted. Calling the setChannel(), nextChannel() or prevChannel() methods while in the
stopped state shall result in the terminal attempting to select the new service. Applications can use the playState
property of the video/broadcast object to read its current state.

Applications can use the playState property of the video/broadcast object to read its current state.

The visibility of a video/broadcast object SHALL NOT affect its state or its use of scarce resources. A
video/broadcast object which is hidden using one of the following techniques:

� the CSS visibility or opacity properties

� using the CSS display:none rule

� removed from the document’s DOM (assuming that the document retains at least one other reference to
the object)

� obscured by other elements

� positioned off the visible area of the screen

SHALL still be decoding video if it is in the presenting state and any audio associated with the currently presented
channel will still be audible. State transitions caused by calls to methods on the video/broadcast object, or due to
permanent or transient errors, will occur as shown above regardless of the visibility of the object.

When a video/broadcast object is destroyed (e.g. by the video/broadcast object being garbage collected), or when the
release() method is called, control of broadcast video shall be returned to the terminal. If an application has modified
the set of components being presented (e.g. changing the audio or subtitle stream being presented) then the same set of
components will continue to be presented.

When a video/broadcast object is destroyed due to a page transition within an application, terminals may delay this
operation until the new page is fully loaded in order to avoid display glitches if a video/broadcast object is also present in
the new page. Presentation of broadcast video or audio SHALL NOT be interrupted in either case.

Page 175 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.1.2 Properties

Integer widthwidthwidthwidth

The width of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the width property corresponds to changing the width property
through the HTMLObjectElement interface, and must have the same effect as changing the width through
the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.width), at least for values
specified in pixels.

Integer heightheightheightheight

The height of the area used for rendering the video object. This property is only writable if property
fullScreen has value false. Changing the height property corresponds to changing the height
property through the HTMLObjectElement interface, and must have the same effect as changing the
height through the DOM Level 2 Style interfaces (i.e. CSS2Properties interface style.height), at least
for values specified in pixels

readonly Boolean fullScreenfullScreenfullScreenfullScreen

Returns true if this video object is in full-screen mode, false otherwise. The default value is false.

function onChannelChangeErroronChannelChangeErroronChannelChangeErroronChannelChangeError(Channel channel, Number errorState)

The function that is called when a request to switch a tuner to another channel resulted in an error
preventing the broadcasted content from being rendered. This function may be called either in response to
a channel change initiated by the application, or a channel change initiated by the OITF (see section
7.13.1.1).

The specified function is called with the arguments channel and errorState. These arguments are
defined as follows:

• Channel channel – the Channel object to which a channel switch was requested, but for which the
error occurred.

• Number errorState – error code detailing the type of error:

Value Description

0 channel not supported by tuner.

1 cannot tune to given transport stream (e.g. no signal)

2 tuner locked by other object.

3 parental lock on channel.

4 encrypted channel, key/module missing.

5 unknown channel (e.g. can’t resolve DVB or ISDB triplet).

Page 176 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6 channel switch interrupted (e.g. because another channel switch was activated before the
previous one completed).

7 channel cannot be changed, because it is currently being recorded.

8 cannot resolve URI of referenced IP channel.

9 insufficient bandwidth.

10 channel cannot be changed by nextChannel()/prevChannel() methods because the OITF
does not maintain a favourites or channel list.

11 insufficient resources are available to present the given channel (e.g. a lack of available codec
resources).

12 specified channel not found in transport stream.

100 unidentified error.

Integer playStateplayStateplayStateplayState

The current play state of the video/broadcast object. Valid values are:

Value Description

0 unrealized; the user (or application) has not made a request to start presenting a channel or
has stopped presenting a channel and released any resources.

1 connecting; the receiver is connecting to the media source in order to begin playback.
Objects in this state may be buffering data in order to start playback.

2 presenting; the media is currently being presented to the user. The object is in this state
regardless of whether the media is playing at normal speed, paused, or playing in a trick
mode (e.g. at a speed other than normal speed).

3 stopped; the terminal is not presenting media, either inside the video/broadcast object or in
the logical video plane. The logical video plane is disabled. Control of media presentation is
under the control of the application, as defined in Section 8.4

See section 7.13.1.1 for a description of the state model for a video/broadcast object.

function onPlayStateChangeonPlayStateChangeonPlayStateChangeonPlayStateChange(Number state, Number error)

The function that is called when the play state of the video/broadcast object changes. This function
may be called either in response to an initiated by the application, an action initiated by the OITF or an
error (see section 7.13.1.1).

The specified function is called with the arguments state and error. These arguments are defined as
follows:

• Number state – the new state of the video/broadcast object

Page 177 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Value Description

0 unrealized; the user (or application) has not made a request to start presenting a
channel or has stopped presenting a channel and released any resources. The content
of the video/broadcast object is transparent. Control of media presentation is under the
control of the OITF, as defined in section H.2.

1 connecting; the receiver is connecting to the media source in order to begin presenting.
Objects in this state may be buffering data in order to start playback. Control of media
presentation is under the control of the application, as defined in section H.2. The
content of the video/broadcast object is transparent.

2 presenting; the media is currently being presented to the user. The object is in this state
regardless of whether the media is playing at normal speed, paused, or playing in a trick
mode (e.g. at a speed other than normal speed). Control of media presentation is under
the control of the application, as defined in section H.2. The video/broadcast object
contains the video being presented.

Number error – if the state has changed due to an error, this field contains an error code detailing the
type of error. See the definition of onChannelChangeError above for valid values. If no error has
occurred, this argument SHALL take the value undefined.

function onChannelChangeSucceededonChannelChangeSucceededonChannelChangeSucceededonChannelChangeSucceeded(Channel channel)

The function that is called when a request to switch a tuner to another channel has successfully
completed. This function may be called either in response to a channel change initiated by the application,
or a channel change initiated by the OITF (see section 7.13.1.1).

The specified function is called with argument channel, which is defined as follows:

• Channel channel – the channel to which the tuner switched.

function onFullScreenChangeonFullScreenChangeonFullScreenChangeonFullScreenChange()

The function that is called when the value of fullScreen changes. The default value is null.

The specified function is called with no arguments.

function onfocusonfocusonfocusonfocus()

The function that is called when the video object gains focus. The specified function is called with no
arguments.

function onbluronbluronbluronblur()

The function that is called when the video object loses focus. The specified function is called with no
arguments.

Page 178 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.1.3 Methods

ChannelConfig getChannelConfiggetChannelConfiggetChannelConfiggetChannelConfig()

Description Returns the channel line-up of the tuner in the form of a ChannelConfig object as defined
in Section 7.13.8. The method SHALL return the value null if the channel list is not
(partially) managed by the OITF (i.e., if the channel list information is managed entirely in
the network).

Channel bindToCurrentChannelbindToCurrentChannelbindToCurrentChannelbindToCurrentChannel(Channel channel)

Description If a broadcast channel is being presented under the control of the OITF (i.e. the video was
being presented by the OITF before the application started) then move the control of the
broadcast channel presentation to the application and present the currently playing
broadcast channel in the video/broadcast object. If the broadcast channel that is being
presented is already under the control by an application instead of the OITF (either by the
current application or by another running application) it cannot be bound using
bindToCurrentChannel(). If video from exactly one channel is currently being presented by
the OITF then this binds the video/broadcast object to that video.

If video from more than one channel is currently being presented by the OITF then this
binds the video/broadcast object to the channel whose audio is being presented.

If there is no channel currently being presented, or binding to the necessary resources to
play the channel through the video/broadcast object fails for whichever reason, the
OITF SHALL dispatch an event to the onPlayStateChange listener(s) whereby the state
parameter is given value 0 (“unrealized”) and the error parameter is given the
appropriate error code.

Calling this method from any other state than the unrealized state SHALL have no effect.

This method returns a Channel object representing the channel being presented, or null
if no video is currently being presented under the control of the terminal.

See state diagram in Section 7.13.1.1 for more information of its usage.

Arguments channel Optional argument indicating the channel to be presented in this
video/broadcast object. If not specified, then this is equivalent to calling
setChannel() with the first entry in the bindableChannels collection (see
section 7.13.7).

Channel createChannelObjectcreateChannelObjectcreateChannelObjectcreateChannelObject(Integer idType, String dsd, Integer sid)

Description Creates a Channel object of the specified idType. This method is typically used to create
a Channel object of type ID_DVB_SI_DIRECT. The Channel object can subsequently be
used by the setChannel() method to switch a tuner to a channel that is not part of the
channel list which was conveyed by the OITF to the server. The scope of the resulting
Channel object is limited to the Javascript environment (incl. video/broadcast object) to
which the Channel object is returned, i.e. it does not get added to the channellist available
through method getChannelConfig().

Valid value for idType include: ID_DVB_SI_DIRECT. For other values this behaviour is
not specified.

Page 179 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the channel of the given type cannot be created or the delivery system descriptor is not
valid, the method SHALL return null.

If the channel of the given type can be created and the delivery system descriptor is valid,
the method SHALL return a Channel object whereby at a minimum the properties with the
same names (i.e. idType, dsd and sid) are given the same value as argument idType,
dsd and sid of the createChannelObject method. Whilst tuning to the given channel
(i.e. using the setChannel() method), the OITF SHOULD fill in the values detected for
properties onid, tsid and sid, even if an error is detected.

Arguments idType The type of channel, as indicated by one of the ID_* constants defined in
Section 7.13.12.1. Valid value for idType include: ID_DVB_SI_DIRECT. For
other values this behaviour is not specified.

dsd The delivery system descriptor (tuning parameters) represented as a string
whose characters shall be restricted to the ISO Latin-1 character set. Each
character in the dsd represents a byte of a delivery system descriptor as
defined by DVB-SI [EN 300 468] section 6.2.13, such that a byte at position "i"
in the delivery system descriptor is equal the Latin-1 character code of the
character at position "i" in the dsd.

sid The service ID.

Channel createChannelObjectcreateChannelObjectcreateChannelObjectcreateChannelObject(Integer idType, Integer onid, Integer tsid, Integer
sid, Integer sourceID, String ipBroadcastID)

Description Creates a Channel object of the specified idType. The Channel object can subsequently
be used by the setChannel method to switch a tuner to a channel that is not part of the
channel list which was conveyed by the OITF to the server. The scope of the resulting
Channel object is limited to the Javascript environment (incl. video/broadcast object) to
which the Channel object is returned, i.e. it does not get added to the channellist available
through method getChannelConfig.

If the channel of the given idType cannot be created or the given (combination of)
arguments are not considered valid or complete, the method SHALL return null.

If the channel of the given type can be created and arguments are considered valid and
complete, the method SHALL return a Channel object whereby at a minimum the
properties with the same names are given the same value as the given arguments of the
createChannelObject method. The values specified for the remaining properties of the
Channel object are set to undefined.

Arguments idType The type of channel, as indicated by one of the ID_* constants defined
in Section 7.13.12.1.

onid The original network ID. Optional argument that SHALL be specified
when the idType specifies a channel of type ID_DVB_* or ID_ISDB_*.

tsid The transport stream ID. Optional argument that MAY be specified
when the idType specifies a channel of type ID_DVB_* or ID_ISDB_*.

sid The service ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_DVB_* or ID_ISDB_*.

sourceID The source_ID. Optional argument that SHALL be specified when the
idType specifies a channel of type ID_ATSC_T.

Page 180 (356)

 Copyright 2010 © Open IPTV Forum e.V.

ipBroadcastID The DVB textual service identifier of the IP broadcast service, specified
in the format “ServiceName.DomainName”, or the URI of the IP
broadcast service. Optional argument that SHALL be specified when
the idType specifies a channel of type ID_IPTV_SDS or
ID_IPTV_URI.

void setChannelsetChannelsetChannelsetChannel(Channel channel, Boolean trickplay, String
contentAccessDescriptorURL)

Description Requests the OITF to switch a (logical or physical) tuner to the channel specified by
channel and render the received broadcast content in the area of the browser allocated for
the video/broadcast object.

If the channel specifies a value for ccid, and the value is not known by the OITF, the OITF
SHALL ignore the request to switch channel and trigger the function specified by the
onChannelChangeError property, specifying the value 5 (“unknown channel”) for the
errorState, and dispatch the corresponding DOM 2 event (see below).

If the channel specifies an idType attribute value which is not supported by the OITF or a
combination of properties that does not identify a valid channel, the OITF SHALL ignore the
request to switch channel and trigger the function specified by the
onChannelChangeError property, specifying the value 0 (“Channel not supported by
tuner”) for the errorState, and dispatch the corresponding DOM 2 event (see below).

If the channel specifies an idType attribute value supported by the OITF, and the
combination of properties defines a valid channel, the OITF SHALL relay the channel
switch request to a local physical tuner that is currently not in use by another
video/broadcast object and that can tune to the specified channel. If no tuner satisfying
these requirements is available (i.e. all physical tuners that could receive the specified
channel are in use), the OITF SHALL ignore the request and trigger the function specified
by the onChannelChangeError property, specifying the value 2 (“tuner locked by other
object”) for the errorState and dispatch the corresponding DOM 2 event (see below). If
multiple tuners satisfying these requirements are available, the OITF selects one.

If the channel specifies an IP broadcast channel, and the OITF supports idType
ID_IPTV_SDS or ID_IPTV_URI, the OITF SHALL relay the channel switch request to a
logical ‘tuner’ that can resolve the URI of the referenced IP broadcast channel. If no logical
tuner can resolve the URI of the referenced IP broadcast channel, the OITF SHALL ignore
the channel switch request and SHOULD trigger the function specified by the
onChannelChangeError property, specifying the value 8 (“cannot resolve URI of
referenced IP channel”) for the errorState, and dispatch the corresponding DOM 2
event.

The optional attribute contentAccessDescriptorURL allows for the inclusion of a
Content Access Streaming Descriptor (the format of which is defined in Annex E.2) to
provide additional information for dealing with IPTV broadcasts that are (partially) DRM-
protected. The descriptor may for example include Marlin action tokens or a
previewLicense. The attribute SHALL be undefined or null if it is not applicable. If the
attribute contentAccessDescriptorURL is present, the trickplay attribute shall take a
value of either true or false.

If, following this procedure, the OITF selects a tuner that was not already being used to
display video inside the video/broadcast object, the OITF SHALL claim the selected
tuner and the associated resources (e.g., decoding and rendering resources) on behalf of
the video/broadcast object.

The OITF SHALL visualize the video content received over the tuner in the area of the
browser allocated for the video/broadcast object. If the OITF cannot visualize the video

Page 181 (356)

 Copyright 2010 © Open IPTV Forum e.V.

content following a successful tuner switch (e.g., because the channel is under parental
lock), the OITF SHALL trigger the function specified by the onChannelChangeError
property with the appropriate channel and errorState value, and dispatch a
corresponding DOM 2 event (see below). If successful, the OITF SHALL trigger the
function specified by the onChannelChangeSucceeded property with the given channel
value, and also dispatch a corresponding DOM 2 event.

Arguments channel The channel to which a switched is requested.

If the channel object specifies a ccid, the ccid
identifies the channel to be set. If the channel does not
specify a ccid, the idType determines which properties
of the channel are used to define the channel to be set,
for example, if the channel is of type ID_IPTV_SDS or
ID_IPTV_URI, the ipBroadcastID identifies the
channel to be set.

trickplay Optional flag indicating whether resources SHOULD be
allocated to support trick play. This argument provides a
hint to the receiver in order that it may allocate
appropriate resources. Failure to allocate appropriate
resources, due to a resource conflict, a lack of trickplay
support, or due to the OITF ignoring this hint, SHALL
have no effect on the success or failure of this method.
If trickplay is not supported, this SHALL be indicated
through the failure of later calls to methods invoking
trickplay functionality.

The timeShiftMode property defined in section
7.13.2.2 shall provide information as to type of trickplay
resources that should be allocated.

If argument contentAccessDescriptorURL is included
then the trickplay argument SHALL be included.

contentAccessDescriptorURL Optional argument containing a Content Access
Streaming descriptor (the format of which is defined in
Annex E.2) that can be included to provide additional
information for dealing with IPTV broadcasts that are
(partially) DRM-protected. The argument SHALL be
undefined or null if it is not applicable.

void prprprprevChannelevChannelevChannelevChannel()

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that precedes the current channel in the active favourite list, or, if no
favourite list is currently selected, to the previous channel in the channel list. If it has
reached the start of the favourite/channel list, it SHALL cycle to the last channel in the list.
If the current channel is not part of the channel list, the result of calling this method is
implementation dependent.

If the previous favourite channel is a non-IP channel that cannot be received over the tuner
currently used by the video/broadcast object, the OITF SHALL relay the channel switch
request to a local physical tuner that is not in use and that can tune to the specified
channel. The behaviour is defined in more detail in the description of the setChannel
method.

If an error occurs during switching to the previous channel, the OITF SHALL trigger the

Page 182 (356)

 Copyright 2010 © Open IPTV Forum e.V.

function specified by the onChannelChangeError property with the appropriate channel
and errorState value, and dispatch the corresponding DOM 2 Event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the OITF SHALL
trigger the onChannelChangeError function with the channel property having the value
null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM 2 event.

void nextChannelnextChannelnextChannelnextChannel()

Description Requests the OITF to switch the tuner that is currently in use by the video/broadcast
object to the channel that succeeds the current channel in the active favourites list, or, if no
favourite list is currently selected, to the next channel in the channel list. If it has reached
the end of the favourite/channel list, it SHALL cycle to the first channel in the list. If the
current channel is not part of the channel list, the result of calling this method is
implementation dependent.

If the next favourite channel is a non-IP channel that cannot be received over the tuner
currently used by the video/broadcast object, the OITF SHALL relay the channel switch
request to a local physical tuner that is not in use and that can tune to the specified
channel. The behaviour is defined in more detail in the description of the setChannel
method.

If an error occurs during switching to the next channel, the OITF SHALL trigger the function
specified by the onChannelChangeError property with the appropriate channel and
errorState value, and dispatch the corresponding DOM 2 event (see below).

If the OITF does not maintain the channel list and favourite list by itself, the OITF SHALL
trigger the onChannelChangeError function with the channel property having the value
null, and errorState=10 (“channel cannot be changed by
nextChannel()/prevChannel() methods”).

If successful, the OITF SHALL trigger the function specified by the
onChannelChangeSucceeded property with the appropriate channel value, and also
dispatch the corresponding DOM 2 event.

void stopstopstopstop()

Description Stop presenting broadcast video. If the video/broadcast object is in any state other than the
unrealized state, it SHALL transition to the stopped state. and stop video and audio
presentation. This SHALL have no effect on access to non-media broadcast resources
such as EIT information.

Calling this method from the unrealized state SHALL have no effect.

See figure 11 in section 7.13.1.1 for more information of its usage.

void setFullScreensetFullScreensetFullScreensetFullScreen(Boolean fullscreen)

Page 183 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description Sets the rendering of the video content to full-screen (fullscreen = true) or windowed
(fullscreen = false) mode (as per [Req. 5.7.4.f] of [CEA-2014-A]). If this indicates a
change in mode, this SHALL result in a change of the value of property fullScreen.
Changing the mode SHALL NOT affect the z-index of the video object.

Arguments fullScreen Boolean to indicate whether video content SHOULD be rendered
full-screen or not.

Boolean setVolumesetVolumesetVolumesetVolume(Integer volume)

Description Adjusts the volume of the currently playing media to the volume as indicated by volume.
Allowed values for the volume argument are all the integer values starting with 0 up to and
including 100. A value of 0 means the sound will be muted. A value of 100 means that the
volume will become equal to current “master” volume of the device, whereby the “master”
volume of the device is the volume currently set for the main audio output mixer of the
device. All values between 0 and 100 define a linear increase of the volume as a
percentage of the current master volume, whereby the OITF SHALL map it to the closest
volume level supported by the platform.

The method returns true if the volume has changed. Returns false if the volume has not
changed. Applications MAY use the getVolume() method to retrieve the actual volume
set.

Arguments volume Integer value between 0 up to and including 100 to
indicate volume level.

Integer getVolumegetVolumegetVolumegetVolume()

Description Returns the actual volume level set; for systems that do not support individual volume
control of players, this method will have no effect and will always return 100.

void releasereleasereleaserelease()

Description Releases the decoder/tuner used for displaying the video broadcast inside the
video/broadcast object, stopping any form of visualization of the video inside the
video/broadcast object and releasing any other associated resources.

7.13.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt
properties

onfocus focus (as specified in Section 1.6.5 of
[DOM 2 Events])

Bubbles: No

Cancelable: No

Context Info: None

Page 184 (356)

 Copyright 2010 © Open IPTV Forum e.V.

onblur blur (as specified in Section 1.6.5 of
[DOM 2 Events])

Bubbles: No

Cancelable: No

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancelable: No

Context Info: None

onChannelChangeError ChannelChangeError Bubbles: No

Cancelable: No

Context Info: channel,
errorState

onChannelChangeSucceeded ChannelChangeSucceeded Bubbles: No

Cancelable: No

Context Info: channel

onPlayStateChange PlayStateChange Bubbles: No

Cancelable: No

Context Info: state,
error

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.1.5 Styling

The OITF SHALL support the CSS properties (which MAY be changed using the DOM Level 2 Style module) for
embedded video/broadcast objects: width, height, position, float, top, left, right, bottom,
vertical-align, padding and padding-* properties, margin and margin-* properties, border and border-
* properties, visibility, and display.

If the value of the <overlaylocaltuner> element in the capability description of the OITF is not set to none, then
the OITF SHALL support overlays as defined by bullet p) of [Req. 5.2.1.a] of CEA-2014-A for broadcasts coming from
the local tuner that are displayed using the video/broadcast embedded object. In this case, broadcast video objects
SHALL support CSS-property z-index, in both full-screen and windowed mode. Moreover, the OITF SHALL support
the CSS opacity property and CSS3 RGBA color values, for any non-video XHTML element on top of a video object.
If the value of the <overlaylocaltuner> element in the capability description of the OITF is set to none, no
objects SHALL overlay the video, i.e. the value of z-index for video is ignored.

If the value of the <overlayIPbroadcast> element in the capability description of the OITF is not set to none, then
the OITF SHALL support overlays as defined by bullet p) of [Req. 5.2.1.a] of CEA-2014-A for IP broadcasts that are
displayed using the video/broadcast embedded object. In this case, broadcast video objects SHALL support CSS-property
z-index, in both full-screen and windowed mode. Moreover, the OITF SHALL support the CSS opacity property
and CSS3 RGBA color values, for any non-video XHTML element on top of a video object. If the value of the
<overlayIPbroadcast> element in the capability description of the OITF is set to none, no objects SHALL overlay
the video, i.e. the value of z-index for video is ignored.

Page 185 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.2 Extensions to video/broadcast for recording and time-shift

If an OITF has indicated support for recording functionality (i.e. by giving value true to element <recording> as
specified in Section 9.3.3 in its capability description), the OITF SHALL support the following additional constants,
properties and methods on the video/broadcast object, in order to start a recording and/or time-shift of a current
broadcast.

Note that this functionality is subject to the security model as specified in Section 10.1.

This functionality is subject to the state transitions represented in the following state diagram:

0: Unrealized

1: Recording has been newly scheduled

2: Recording is about to start

3: Acquiring recording resources (incl. media connection)

4: Recording has started

recordNow()

(i.e. starttime = now)

now >= starttime – x minutes warning

now >= starttime

Recording resources

acquired and media

connected

5: Recording has been updated

recordNow() called again

for the same broadcast

automatic

6: Recording has successfully completed

now >= endtime recording (starttime+

duration)

Recording Error

stopRecording()

10: Acquiring timeshift resources

pause()

11: Timeshift mode has started

Timeshift resources

acquired and media

connected

Recording Error

stopTimeshift()

switch to another

channel

recordNow()

Figure 16: PVR States for recordNowrecordNowrecordNowrecordNow and timeshifting using video/broadcastvideo/broadcastvideo/broadcastvideo/broadcast

Note that when the user switches to another channel whilst the current channel is being recorded using recordNow or
the video/broadcast object gets destroyed, the conflict resolution and the release of resources is implementation
dependent. The OITF MAY report a recording error using a RecordingEvent with value 0 (“Unrealized”) for
argument state and with value 2 (“Tuner conflict”) for argument error in that case.

7.13.2.1 Additional constants for video/broadcast o bject

Page 186 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Name Value Use

POSITION_START 0 Indicates a playback position relative to the start of the buffered content.

POSITION_CURRENT 1 Indicates a playback position relative to the current playback position.

POSITION_END 2 Indicates a playback position relative to the end of the buffered content.

7.13.2.2 Additional properties for video/broadcast object

function onPlaySpeedChangedonPlaySpeedChangedonPlaySpeedChangedonPlaySpeedChanged(Number speed)

The function that is called when the playback speed of a channel changes.

The specified function is called with one argument, speed, which is defined as follows:

• Number speed – the playback speed of the media at the time the event was dispatched.

If the playback reaches the beginning of the time-shift buffer at rewind playback speed, then the play
state is changed to 2 (‘paused’) and a PlaySpeedChanged event with a speed of 0 is generated. If the
playback reaches the end of the time-shift buffer at fast-forward playback speed, then the play speed is
set to 1.0 and a PlaySpeedChanged event is generated.

function onPlayPositionChangedonPlayPositionChangedonPlayPositionChangedonPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of a channel due to the use of trick
play functions.

The specified function is called with one argument, position, which is defined as follows:

• Integer position – the playback position of the media at the time the event was dispatched,
measured from the start of the timeshift buffer. If the value of the currentTimeShiftMode
property is 1, this is measured in milliseconds from the start of the timeshift buffer. If the value of
the currentTimeShiftMode property is 2, this is measured in milliseconds from the start of the
media item. If the play position cannot be determined, this argument takes the value undefined.

readonly Integer playbackOffsetplaybackOffsetplaybackOffsetplaybackOffset

Returns the playback position, specified as the positive offset of the live broadcast in seconds, in the
currently rendered (timeshifted) broadcast.

When the currentTimeShiftMode property has the value 1, the value of this property is undefined.

readonly Integer maxOffsetmaxOffsetmaxOffsetmaxOffset

Returns the maximum playback offset, in seconds of the live broadcast, which is supported for the
currently rendered (timeshifted) broadcast. If the maximum offset is unknown, the value of this property
SHALL be undefined.

Page 187 (356)

 Copyright 2010 © Open IPTV Forum e.V.

When the currentTimeShiftMode property has the value 1, the value of this property is undefined.

readonly Integer recordingStaterecordingStaterecordingStaterecordingState

Returns the state of the OITF’s timeshift and recordNow functionality for the channel shown in the
video/broadcast object. One of:

Value Description

0 Unrealized: user/application has not requested timeshift or recordNow functionality for the
channel shown. No timeshift or recording resources are claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start .

3 Acquiring recording resources (incl. media connection).

4 Recording has started.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (incl. media connection).

11 Timeshift mode has started.

When the currentTimeShiftMode property has the value 1, the value of this property is undefined.

function onRecordingEventonRecordingEventonRecordingEventonRecordingEvent(Integer state, Integer error, String recordingId)

This function is the DOM 0 event handler for notification of state changes of the recording functionality.

The specified function is called with the following arguments:

• Integer state - The current state of the recording. One of:

Value Description

0 Unrealized: user/application has not requested timeshift
or recordNow functionality for the channel shown. No
timeshift or recording resources are claimed in this state.

1 Recording has been newly scheduled.

2 Recording is about to start .

3 Acquiring recording resources (including media
connection).

4 Recording has started.

Page 188 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5 Recording has been updated.

6 Recording has successfully completed.

10 Acquiring timeshift resources (including media
connection).

11 Timeshift mode has started.

• Integer error - If the state of the recording has changed due to an error, this field contains an
error code detailing the type of error. One of:

Value Description

0 The recording sub-system is unable to record due to
resource limitations.

1 There is insufficient storage space available. (Some of the
recording may be available).

2 Tuner conflict (e.g. due to conflicting scheduled
recording).

3 Recording not allowed due to DRM restrictions.

4 Recording has stopped before completion due to
unknown (probably hardware) failure.

10 Timeshift not possible due to resource limitations.

11 Timeshift not allowed due to DRM restrictions.

12 Timeshift ended due to unknown failure.

If no error has occurred, this argument SHALL take the value undefined.

• String recordingId - The identifier of the recording to which this event refers.

readonly Integer playPositionplayPositionplayPositionplayPosition

If the value of the currentTimeShiftMode property is 1, the current playback position of the media,
measured in milliseconds from the start of the timeshift buffer.

If the value of the currentTimeShiftMode property is 2, the current playback position of the media,
measured in milliseconds from the start of the media item.

readonly Number playSpeedplaySpeedplaySpeedplaySpeed

The current play speed of the media.

Page 189 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Number playSpeedsplaySpeedsplaySpeedsplaySpeeds[]

Returns the ordered list of playback speeds, expressed as values relative to the normal playback
speed (1.0), at which the currently specified A/V content can be played (as a time-shifted broadcast in
the video/broadcast object), or undefined if the supported playback speeds are not known or the
video/broadcast object is not in timeshift mode..

If the video/broadcast object is in timeshift mode, the playSpeeds array SHALL always include at
least values 1.0 and 0.0.

function onplaySpeedsonplaySpeedsonplaySpeedsonplaySpeedsArrayArrayArrayArrayChangedChangedChangedChanged()

The function that is called when the playSpeeds array values have changed. An application that
makes use of the playSpeeds array needs to read the values of the playSpeeds property again.

Integer timeShiftModetimeShiftModetimeShiftModetimeShiftMode

The time shift mode indicates the mode of operation for support of timeshift playback in the
video/broadcast object. Valid values are:

Value Description

0 Timeshift is turned off.

1 Timeshift shall use “local resource”

2 Timeshift shall use “network resources”.

3 Timeshift shall first use “local resource” when available and fallback to “network
resources”.

If property is not set the default value of the property is according to preferredTimeShiftMode in
section 7.3.2.1.

readonly Integer currentTimeShiftModecurrentTimeShiftModecurrentTimeShiftModecurrentTimeShiftMode

When timeshift is in operation the property indicates which resources are currently being used. Valid
values are:

Value Description

0 No timeshift

1 Timeshift using “local resource”

2 Timeshift using “network resources”

Page 190 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.2.3 Additional methods for video/broadcast obj ect

String recordNowrecordNowrecordNowrecordNow(Integer duration)

Description Starts recording the broadcast currently rendered in the video/broadcast object. If
the OITF has buffered the broadcasted content, the recording starts from the current
playback position in the buffer, otherwise start recording the broadcast stream as soon
as possible after the recording resources have been acquired. The specified duration
is used by the OITF to determine the minimum duration of the recording in seconds
from the current starting point.

If recordNow() is called while the broadcast that is currently rendered in the
video/broadcast object is already being recorded, the total duration of this ongoing
recording is extended by the value of the duration argument (i.e. the value of the
duration argument is added onto the remaining recording time).The success or
failure and the current state of the recording can be tracked using the
onRecordingEvent intrinsic event handler as defined in Section 7.13.2.2 or by
registering for the respective DOM 2 RecordingEvent as defined in Section 1.1.1.

The method returns a String value representing a unique identifier to identify the
recording. If the OITF provides recording management functionality through the APIs
defined in section 7.10.4, this SHALL be the value of the id property of the associated
Recording object defined in section 7.10.5.1.

The OITF SHALL guarantee that recording identifiers are unique in relation to
download identifiers and CODAsset identifiers.

The method returns undefined if the given argument is not accepted to trigger a
recording.

If the OITF supports metadata processing in the terminal, the fields of the resulting
Recording object MAY be populated using metadata retrieved by the terminal.
Otherwise, the values of these fields SHALL be implementation-dependent

Arguments duration The minimum duration of the recording in seconds. A value of -1
indicates that the recording SHOULD continue until stopRecording()
is called, storage space is exhausted, or an error occurs. In this case it is
essential that stopRecording() is called later.

void stopRecordingstopRecordingstopRecordingstopRecording()

Description Stops the current recording started by recordNow.

Boolean pausepausepausepause()

Description Pause playback of the broadcast.

This operation may be asynchronous, and presentation of the video may not pause
until after this method returns. For this reason, a PlaySpeedChanged event will be
generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

The action taken depends on the value of the timeShiftMode property.

Page 191 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the value of the timeShiftMode property is 0, if trick play is not supported for the
channel currently being rendered, or if the current time shift mode is not supported for
the type of channel being presented (e.g. attempting to use network resource to time
shift a DVB or analogue channel) this method shall return false.

If the timeshift mode is set to 1 or 3 (local resources) and if recording has not yet been
started, this method will start recording the broadcast that is currently being rendered
live (i.e., not time-shifted) in the video/broadcast object and return true. If the OITF has
buffered the ‘live’ broadcasted content, the recording starts with the content that is
currently being rendering in the video/broadcast object. Since this operation may be
asynchronous if the recording started successfully, the rendering of the broadcasted
content is paused, i.e. a still-image video frame is shown, and a PlaySpeedChanged
event is generated.

If the timeshift mode is set to 2 (network resources) then the OITF shall follow the
procedures defined in section 8.2.3.2.3 and returns true. Since this operation is
asynchronous when the procedure are executed successful the rendering of the
broadcasted content is paused, i.e. a still-image video frame is shown, and
PlaySpeedChanged event is generated.

If the specified timeshift mode is not supported, this method shall return false.
Otherwise, this method shall return true. Acquiring the necessary resources to enable
the specified timeshift mode may be an asynchronous operation; applications may
receive updates of this process by registering a listener for RecordingEvents as
defined in section 1.1.1.

Boolean resumeresumeresumeresume()

Description Resumes playback of the time-shifted broadcast channel that is currently being
rendered in the video/broadcast object at the speed specified by setSpeed(). If the
desired speed was not set via setSpeed(), playback is resumed at normal speed (i.e.
speed 1.0).

This operation may be asynchronous, and presentation of the video may not resume
until after this method returns. For this reason, a PlaySpeedChanged event will be
generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

If playback is not currently paused, the OITF shall ignore the request to start playback
and shall return false.

The action taken depends on the value of the timeShiftMode property.

If the value of the timeShiftMode property is 1 or 3 (local resources) then the OITF
shall resume playback of the broadcast channel as specified above and return true.

If the value of the timeShiftMode property is 2 (network resources) then the OITF
shall follow the procedures defined in section 8.2.3.2.3 and return true. Since this
operation is asynchronous when the procedure is successfully executed a
PlaySpeedChanged event is generated with current speed.

After initial operation of resume() several events may affect the operation.

If during fast forward the end of stream is reached the playback SHALL resume at
normal speed and a PlaySpeedChanged event is generated. If the end of stream is
reached due to end of content the playback will automatically be paused and a
PlaySpeedChanged event is generated. Any resources used for time-shifting SHALL

Page 192 (356)

 Copyright 2010 © Open IPTV Forum e.V.

NOT be discarded.

If during rewinding the playback reaches the point that it cannot be rewound further,
playback will automatically be paused (i.e. the play speed will be changed to 0) and a
PlaySpeedChanged event is generated.

If for any of these events timeShiftMode is set to 3 and local resources are not
available anymore then network sources SHALL be used according to the procedures
defined in section 8.2.3.2.3. The OITF SHALL perform a smooth transition of the
stream between local and network resources.

Boolean setSpeedsetSpeedsetSpeedsetSpeed(Number speed)

Description Sets the playback speed of the time-shifted broadcast to the value speed. If the time-
shifted broadcast cannot be played at the desired speed (specified as a value relative
to the normal playback speed), the playback speed will be set to the best
approximation of speed. Applications are not required to pause playback of the
broadcast or take any other action before calling setSpeed().

Setting a speed of 0 SHALL have the same effect as calling pause(). If playback is
paused, setting the speed SHALL NOT cause playback to resume.

If the video/broadcast object is currently not rendering a time-shifted channel, the
OITF shall ignore the request to change the playback speed and shall return false,
otherwise true is returned.

This operation may be asynchronous, and presentation of the video may not be
affected until after this method returns. For this reason, a PlaySpeedChanged event
will be generated when the operation has completed, regardless of the success of the
operation. If the operation fails, the argument of the event SHALL be set to the
previous play speed.

The action taken depends on the value of the timeShiftMode property.

If the value of the timeShiftMode property is 1 or 3 (local resources) then the
setSpeed() method sets the playback speed of the time-shifted broadcast to the
value speed.

If the timeShiftMode is set to 2 (network resources) the OITF shall follow the
procedures defined in section 8.2.3.2.3 and return true. Since this operation is
asynchronous when the procedure is successfully executed PlaySpeedChanged
event is generated with the new speed.

After initial operation of setSpeed() several events may affect the operation.

If during fast forward the end of stream is reached the playback SHALL resume at
normal speed and a PlaySpeedChanged event is generated. If the end of stream is
reached due to end of content the playback will automatically be paused and a
PlaySpeedChanged event is generated. Any resources used for time-shifting SHALL
NOT be discarded.

If during rewinding the playback reaches the point that it cannot be rewound further,
playback will automatically be paused (i.e. the play speed will be changed to 0) and a
PlaySpeedChanged event is generated.

If for any of these events if timeShiftMode is set to 3 and local resources are not
available anymore then network sources SHALL be used according to the procedures
defined in section 8.2.3.2.3. The OITF SHALL perform a smooth transition of the

Page 193 (356)

 Copyright 2010 © Open IPTV Forum e.V.

stream between local and network resources.

Arguments speed The desired relative playback speed, specified as a float value relative to
the normal playback speed of 1.0. A negative value indicates reverse
playback. If the time-shifted broadcast cannot be played at the desired
speed, the playback speed will be set to the best approximation.

Boolean seekseekseekseek(Integer offset, Integer reference)

Description Sets the playback position of the time-shifted broadcast that is being rendered in the
video/broadcast object to the position specified by the offset and the reference point as
specified by one of the constants defined in Section 7.13.2.1. Returns true if the
playback position is a valid position to seek to, false otherwise.

Applications are not required to pause playback of the broadcast or take any other
action before calling seek().

This operation may be asynchronous, and presentation of the video may not be
affected until after this method returns. For this reason, a PlayPositionChanged
event will be generated when the operation has completed, regardless of the success
of the operation. If the operation fails, the argument of the event SHALL be set to the
previous play position.

If the video/broadcast object is currently not rendering a time-shifted channel or if
the position falls outside the time-shift buffer, the OITF shall ignore the request to seek
and shall return the value false.

The action taken depends on the value of the timeShiftMode property.

If the timeShiftMode is set to 1 (local resources) the seek() method sets the
playback position of the time-shifted broadcast that is being rendered in the
video/broadcast object as defined above. Playback of live content is resumed if the
new position equals the end of the time-shift buffer.

If the timeShiftMode is set to 2 (network resources) the OITF shall follow the
procedures defined in section 8.2.3.2.3 and return true. Since this operation is
asynchronous when the procedure is successfully executed PlayPositionChanged
event is generated with the new position.

Note that if timeShiftMode is set to 3 then local resources are used over network
resources.

After initial operation of seek() several events may affect the operation.

If during fastforward the end of stream is reached the playback SHALL resume at
normal speed and a PlaySpeedChanged event is generated. If the end of stream is
reached due to end of content the playback will automatically be paused and a
PlaySpeedChanged event is generated. Any resources used for time-shifting SHALL
NOT be discarded.

If for any of these events if timeShiftMode is set to 3 and local resources are not
available anymore then network sources SHALL be used according to the procedures
defined in section 8.2.3.2.3. The OITF SHALL perform a smooth transition of the
stream between local and network resources.

Arguments offset The offset from the reference position, in seconds. This can be either
a positive or negative value.

Page 194 (356)

 Copyright 2010 © Open IPTV Forum e.V.

reference The reference point from which the offset SHALL be measured. The
reference point can be either POSITION_CURRENT,
POSITION_START, or POSITION_END.

Boolean stopTimeshiftstopTimeshiftstopTimeshiftstopTimeshift()

Description Stops rendering in time-shifted mode of the broadcast channel in the
video/broadcast object and, if applicable, plays the current broadcast from the live
point and stops time-shifting the broadcast. The OITF SHALL release all resources
that were used to support time-shifted rendering of the broadcast. This operation
SHALL NOT affect recording of a channel if recordNow() was used.

Returns true if the time-shifted broadcast was successfully stopped and resources
were released and false otherwise. If the video/broadcast object is currently not
rendering a time-shifted channel, the OITF shall ignore the request to stop the time-
shift and shall return the value false.

In addition to these methods, the OITF SHALL support an additional optional attribute offSet on the
setChannel(Channel channel, Boolean trickplay, String contentAccessDescriptorURL)
method of the video/broadcast object as defined in Section 7.13.1.3, if the OITF has indicated support for scheduled
content over IP by defining one or more ID_IPTV_* values as part of the transport attribute of the <video_broadcast>
element in the capability description.

void setChannelsetChannelsetChannelsetChannel(Channel channel, Boolean trickplay, String
contentAccessDescriptorURL, Integer offset)

Description Requests the OITF to switch a (logical or physical) tuner to the specified channel and
render the received broadcast content in the area of the browser allocated for the
video/broadcast object, as specified by the setChannel(Channel channel,
Boolean trickPlay, String contentAccessDescriptorURL) method in
Section 7.13.1.3.

The additional offSet attribute optionally specifies the desired offset with respect to
the live broadcast in number of seconds from which the OITF SHOULD start playback
immediately after the channel switch (whereby offSet is given as a positive value for
seeking to a time in the past). If an OITF cannot start playback from the desired
position, as indicated by the specified offSet (e.g. because the OITF did not, or could
not, record the specified channel prior to the call to setChannel), if the specified
offSet is ‘0’, or if the offSet is not specified, the OITF SHALL start playback from
the live position after the specified channel switch.

Arguments channel As defined for method setChannel()in Section
7.13.1.3.

trickplay Optional flag as defined for method
setChannel()in Section 7.13.1.3.

contentAccessDescriptorURL Optional attribute as defined for method
setChannel()in Section 7.13.1.3.

offset The optional offset attribute MAY be used to specify
the desired offset with respect to the live broadcast
in number of seconds from which the OITF
SHOULD start playback immediately after the
channel switch (whereby offset is given as a

Page 195 (356)

 Copyright 2010 © Open IPTV Forum e.V.

positive value for seeking to a time in the past).

7.13.2.4 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onRecordingEvent RecordingEvent (as specified
in Section 1.1.1)

Bubbles: No

Cancelable: No

Context Info: state, error,
recordingId

onPlaySpeedChanged PlaySpeedChanged Bubbles: No

Cancelable: No

Context Info: speed

onPlayPositionChanged PlayPositionChanged Bubbles: No

Cancelable: No

Context Info: position

onPlaySpeedsArrayChanged PlaySpeedsArrayChanged Bubbles: No

Cancelable: No

Context Info: None

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the video/broadcast object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.3 Extensions to video/broadcast for access to EIT p/f

The following properties and events SHALL be added to the video/broadcast embedded object, if the OITF has indicated
support for accessing DVB-SI EIT p/f information, by giving the value “true” to element <clientMetadata> and
the value “eit-pf” or “dvb-si” to the type attribute of that element as defined in Section 9.3.7 in their capability
profile.

Access to these properties SHALL adhere to the security model in Section 10. The associated permission name is
“permission_metadata”.

readonly ProgrammeCollection programmesprogrammesprogrammesprogrammes

Page 196 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The collection of programmes available on the currently tuned channel. This list is a
ProgrammeCollection as defined in Section 7.16.3 and is ordered by start time, so index 0 will
always refer to the present programme (if this information is available).

If the type attribute of the <clientMetadata> element in the OITF’s capability description has the
value “eit-pf”, this list SHALL at least provide Programme objects as defined in Section 7.16.2 for the
present and the directly following programme on the currently tuned channel, if that information is
available. In other words, the DAE application should not expect programmes.length to be larger
than 2.

If the video/broadcast object is not currently tuned to a channel, or if the present/following
information has not yet been retrieved (e.g. the object has just tuned to a new channel and
present/following information has not yet been broadcast), or if present/following information is not
available for the current channel, the length of this collection SHALL be 0.

If the type attribute of the <clientMetadata> element in the OITF’s capability description has a value
other than “eit-pf”, an OITF MAY populate this field from other metadata sources described in
[OIPF_META2].

The programmes.length property SHALL indicate the number of items that are currently known and
up to date (i.e. whereby the “startTime + duration” is not smaller than the current time). This may
be 0 if no programme information is currently known for the currently tuned channel.

In order to prevent misuse of this information, access to this property SHALL adhere to the security
model in Section 10. The associated permission name is “permission_metadata”.

function onProgrammesChangedonProgrammesChangedonProgrammesChangedonProgrammesChanged()

The function that is called when the programmes property has been updated with new programme
information, e.g. when the current broadcast programme is finished and a new one has started. The
specified function is called with no arguments.

7.13.3.1 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onProgrammesChanged ProgrammesChanged Bubbles: No

Cancelable: No

Context Info: None

7.13.4 Extensions to video/broadcast for playback o f selected
components

To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or
camera angle), the classes defined in Sections 7.16.5.2 – 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in Section 7.16.5.1 SHALL be supported on the video/broadcast object.

Page 197 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.5 Extensions to video/broadcast for parental r atings errors

For parental rating related errors or changes during playback of A/V content through the “video/broadcast” object
an OITF SHALL support the following intrinsic event properties and corresponding DOM 2 events for the
“video/broadcast” object:

function onParentalRatingChangeonParentalRatingChangeonParentalRatingChangeonParentalRatingChange(String contentID, ParentalRating rating,
String DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the
embedded object changes.

These events may occur at the start of a new content item, or during playback of a content item (e.g.
during playback of linear TV).

The specified function is called with four arguments contentID, rating, DRMSystemID, and blocked
which are defined as follows:

• String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of
the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise it MAY be
null or undefined.

• ParentalRating rating – the parental rating value of the currently playing content. The
ParentalRating object is defined in Section 7.9

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM
system that generated the event as defined by element DRMSystemID in Table 8 of Section 3.3.2
of [OIPF_META2]. The value SHALL be null if the parental control is not enforced by a
particular DRM system.

• Boolean blocked – flag indicating whether consumption of the content is blocked by the
parental control system as a result of the new parental rating value.

function onParentalRatingErroronParentalRatingErroronParentalRatingErroronParentalRatingError(String contentID, ParentalRating rating, String
DRMSystemID)

The function that is called when a parental rating error occurs during playback of A/V content inside the
embedded object, and is triggered whenever a parental rating value is discovered for a parental rating
system that is not supported by the OITF.

The specified function is called with three arguments contentID, rating, and DRMSystemID which
are defined as follows:

• String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of
the DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise it MAY be
null or undefined.

• ParentalRating rating – the parental rating value of the currently playing content. The
ParentalRating object is defined in Section 7.9.

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM
system that generated the event as defined by element DRMSystemID in Table 8 of Section 3.3.2

Page 198 (356)

 Copyright 2010 © Open IPTV Forum e.V.

of [OIPF_META2]. The value SHALL be null if the parental control is not enforced by a
particular DRM system.

7.13.5.1 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No

Cancelable: No

Context Info: contentID, rating,
DRMSystemID and blocked

onParentalRatingError ParentalRatingError Bubbles: No

Cancelable: No

Context Info: contentID, rating,
and DRMSystemID.

Note: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a ParentalRatingError event during the bubbling or the capturing phase. The
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the
video/broadcast object itself. The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.6 Extensions to video/broadcast for DRM rights errors

This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in Section 9.3.10:

For notifying Javascript about DRM licensing errors during playback of DRM protected A/V content through the
“video/broadcast” object, an OITF SHALL support the following intrinsic event property and corresponding DOM
2 event for the “video/broadcast” object:

function onDRMRightsErroronDRMRightsErroronDRMRightsErroronDRMRightsError(Integer errorState, String contentID, String
DRMSystemID, String rightsIssuerURL)

The function that is called:

• Whenever a rights error occurs for the A/V content (no license, license invalid), which has led to
blocking consumption of the content.

• Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking
the consumption of the content.

Page 199 (356)

 Copyright 2010 © Open IPTV Forum e.V.

This may occur during playback, recording or timeshifting of DRM protected AV content. The specified
function is called with four arguments errorState, contentID, DRMSystemID and
rightsIssuerURL which are defined as follows:

• Integer errorState – error code detailing the type of error:

0: no license, consumption of the content is blocked.

1: invalid license, consumption of the content is blocked.

2: valid license, consumption of the content is unblocked.

• String contentID – the unique identifier of the protected content in the scope of the DRM
system that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of
CSPG-CI+ and CSPG-DTCP this field is empty).

• String DRMSystemID – DRMSystemID as defined by element DRMSystemID in Table 8 of
Section 3.3.2 of [OIPF_META2]. For example, for Marlin, the DRMSystemID value is
“urn:dvb:casystemid:19188”.

• String rightsIssuerURL – optional element indicating the value of the rightsIssuerURL that
can be used to non-silently obtain the rights for the content item currently being played for which
this DRM error is generated, in cases whereby the rightsIssuerURL is known. Cases whereby
the rightsIssuerURL is known include cases whereby the rightsIssuerURL has been
extracted from the MPEG2_TS of the protected content, retrieved from the SD&S discovery
record or from the associated BCG metadata. The corresponding rightsIssuerURL fields are
defined in Section 4.1.3.4 of [OIPF_CSP2] and in section 3.3.2 of [OIPF_META2] respectively. If
different URLs are retrieved from the stream and the metadata, then the conflict resolution is
implementation-dependent.

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMRightsError DRMRightsError � Bubbles: No

� Cancelable: No

� Context Info: errorState, contentID,
DRMSystemID, rightsIssuerURL

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications that
use DOM 2 event handlers SHALL call the addEventListener() method on the video/broadcast object itself.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

Page 200 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.13.7 Extensions to video/broadcast for current ch annel information

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in Section 9.3.6 in its capability description), the OITF SHALL support the
following additional properties and methods on the video/broadcast object.

The functionality as described in this section is subject to the security model of Section 10.1.4.8.

Note the property onChannelScan and methods startScan and stopScan have been moved to section 7.13.10.

7.13.7.1 Properties

readonly ChannelList bindableChannelsbindableChannelsbindableChannelsbindableChannels

The channels currently being presented under the control of the OITF (i.e. the channels that were
being presented by the OITF when the application started). If no channels are being presented under
the control of the OITF, the value of this property SHALL be null.

readonly Channel currentChannelcurrentChannelcurrentChannelcurrentChannel

The channel currently being presented by this embedded object if the user has given permission to
share this information, possibly through a mechanism outside the scope of this specification. If no
channel is being presented, or if this information is not visible to the caller, the value of this property
SHALL be null.

The value of this property is not affected during timeshift operations and SHALL reflect the value prior
to the start of a timeshift operation, for both local and network timeshift resources.

7.13.8 Extensions to video/broadcast for creating c hannel lists from
SD&S fragments

Note the method createChannelList() has been moved to section 7.13.10.

7.13.9 Extensions to video/broadcast for synchroniz ation

The OITF SHALL support the following additional methods on the video/broadcast object, in order to enable
synchronization to broadcast events.

void addStreamEventListeneraddStreamEventListeneraddStreamEventListeneraddStreamEventListener(String targetURL, String eventName,

 function listener)

Description Add a listener for the specified DSM-CC stream event.

Event triggers are carried in the stream as MPEG private data sections. For
robustness, the section describing a particular trigger may be repeated several times.
Each section has a version number which is used to disambiguate a new trigger for the
same event (which will have a different version number) from a repeated instance of a
previous trigger (which will have the same version number).

When OITF detects a trigger corresponding to an event for which a listener has been
registered, a DOM StreamEvent SHALL be dispatched.

An event shall also be dispatched in case of error.

Page 201 (356)

 Copyright 2010 © Open IPTV Forum e.V.

An OITF SHALL dispatch only one DOM StreamEvent per unique trigger detected.
Repeated instances of the same trigger SHALL NOT cause a new DOM StreamEvent
to be dispatched. A new trigger for the same event (i.e. an MPEG private data section
for the same event but with an updated version number) SHALL cause a new
DOMStreamEvent to be dispatched.

Arguments targetURL The URL of the DSM-CC StreamEvent object or the event
description file describing the event as defined in Section 8.2
of [TS 102 809].

eventName The name of the event (in the DSM-CC StreamEvent object)
that should be subscribed to.

listener The listener for the event.

void removeStreamEventListenerremoveStreamEventListenerremoveStreamEventListenerremoveStreamEventListener(String eventURL, String eventName,

 function listener)

Description Remove a stream event listener for the specified stream event name.

Arguments targetURL The URL of the DSM-CC StreamEvent object or the event description
file describing the event as defined in Section 8.2 of [TS 102 809].

eventName The name of the event (in the DSM-CC StreamEvent object) whose
subscription should be removed.

listener The listener for the event.

7.13.9.1 The StreamEvent class

The StreamEvent class is a subclass of the DOM 2 Event class which notifies an application that a synchronisation
trigger in a broadcast stream has been detected. This event also notifies an application when the event is no longer being
monitored.

Instances of this event are directly dispatched to the event target, and will not bubble nor capture.

readonly String eventNameeventNameeventNameeventName

The name of the stream event.

readonly String datadatadatadata

Data of the DSM-CC StreamEvent’s event encoded in hexadecimal. For example: “0A10B81033” (for a
message 5 bytes long).

readonly String texttexttexttext

Text data of the DSM-CC StreamEvent’s event as a string, assuming UTF-8 as the encoding for the
DSM-CC StreamEvent’s event. Characters that cannot be transcoded SHALL be skipped.

Page 202 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String statusstatusstatusstatus

The status of the event. Equal to “trigger” when the event is dispatched in response to a trigger in
the stream or “error” when an error occurred (e.g. attempting to add a listener for an event that does
not exist, or when a StreamEvent object with registered listeners is removed from the carousel).

An event SHALL be dispatched with an error status if:

• the StreamEvent object pointed to by targetURL is not found in the carousel or via broadband

• the StreamEvent object pointed to by targetURL does not contain the event specified by the
eventName parameter

• the carousel containing the event cannot be mounted

• the elementary stream which contains the StreamEvent event descriptor is no longer being
monitored (e.g. due to another monitoring request or because it disappears from the PMT)

• the event description file pointed to by targetURL is not available or does not have the correct
syntax.

Once an error is dispatched, the listener SHALL be automatically unregistered by the OITF.

7.13.10 The ChannelConfig class

The ChannelConfig object provides the entry point for applications to get information about available channels. It can
be obtained in two ways:

• By calling the method getChannelConfig() of the video/broadcast embedded object as defined in
Section 7.13.1.3.

• By calling the method createChannelConfig() of the object factory API as defined in Section 7.1.1.

The availability of the properties and methods are dependent on the capabilities description as specified in section 9.3.
The following table provides a list of the capabilities and the associated properties and methods. If the capability is false
the properties and methods SHALL NOT be available to the application. Properties and methods not listed in the
following table SHALL be available to all applications as long as the OITF has indicated support for tuner control (i.e.
<video_broadcast>true</video_broadcast> as defined in Section 9.3.1) in their capability.

Capability Properties Methods

Element <extendedAVControl>
is set to “true” as defined in
Section 9.3.6.

onChannelScan startScan()

stopScan()

Element <video_broadcast
type="ID_IPTV_SDS"> is set as
defined in Section 9.3.6.

 createChannelList()

The functionality as described in this section is subject to the security model of Section 10.1.4.8.

7.13.10.1 Properties

readonly ChannelList channelListchannelListchannelListchannelList

The list of all available channels. The order of the channels in the list corresponds to the channel

Page 203 (356)

 Copyright 2010 © Open IPTV Forum e.V.

ordering as managed by the OITF.

SHALL return the value null if the channel list is not (partially) managed by the OITF (i.e., if the
channel list information is managed entirely in the network).

readonly FavouriteListCollection favouriteListsfavouriteListsfavouriteListsfavouriteLists

A list of favourite lists. SHALL return the value null if the favourite lists are not (partially) managed by
the OITF (i.e., if the favourite lists information is managed entirely in the network).

readonly FavouriteList currentFavouriteListcurrentFavouriteListcurrentFavouriteListcurrentFavouriteList

Currently active Favourite channel list object. If currentFavouriteList is undefined, no favourite
filter list is currently applied.

The OITF SHALL return the value null if the favourite lists are not (partially) managed by the OITF
(i.e. if the favourite lists information is managed entirely in the network).

function onChannelScanonChannelScanonChannelScanonChannelScan(Integer type, Integer progress, Integer frequency,

 Integer signalStrength, Integer channelNumber,

 Integer channelType, Integer channelCount,

 Integer transponderCount)

This function is the DOM 0 event handler for events relating to channel scanning. On IP-only receivers,
setting this property SHALL have no effect.

The specified function is called with the following arguments:

• Integer type - The type of event. Valid values are:

Value Description

0 A channel scan has started.

1 Indicates the current progress of the scan.

2 A new channel has been found.

3 A new transponder has been found.

4 A channel scan has completed.

5 A channel scan has been aborted.

• Integer progress - the progress of the scan. Valid values are in the range 0 - 100, or -1 if the
progress is unknown.

• Integer frequency - The frequency of the transponder in kHz (for scans on RF sources only).

Page 204 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Integer signalStrength - The signal strength for the current channel. Valid values are in the
range 0 - 100, or -1 if the signal strength is unknown.

• Integer channelNumber - The logical channel number of the channel that has been found.

• Integer channelType - The type of channel that has been found. Valid values are the same
as for Channel.channelType.

• Integer channelCount - The total number of channels found so far during the scan.

Integer transponderCount - The total number of transponders found so far during the scan (RF
sources only).

function onChannelonChannelonChannelonChannelListUpdateListUpdateListUpdateListUpdate

This function is the DOM 0 event handler for events relating to channel list updates. Upon receiving a
ChannelListUpdate event, if an application has references to any Channel objects then it SHOULD
dispose of them and rebuild its references. Where possible Channel objects are updated rather than
removed, but their order in the ChannelConfig.all collection MAY have changed. Any lists created with
ChannelConfig.createFilteredList() SHOULD be recreated in case channels have been removed.

7.13.10.2 Methods

ChannelList createFilteredListcreateFilteredListcreateFilteredListcreateFilteredList(Boolean blocked, Boolean favourite, Boolean
hidden, String favouriteListID)

Description Create a filtered list of channels. Returns a subset of ChannelConfig.channelList.

The blocked, favourite and hidden flags indicate whether a channel is included in
the returned list. These flags correspond to the properties on Channel with the same
names. Each flag MAY be set to one of three values:

Value Meaning

true The channel is added if and only if the corresponding property has
the value true.

false The channel is added if and only if the corresponding property has
the value false.

undefined The channel is added regardless of the state of the corresponding
property.

A channel will only be added to the list if the values of all three flags allow it to be
added.

The favouriteListID attribute is used to select a particular favouriteList that
the createFilteredList method uses as a basis of the filtering process. If
favouriteListID is the empty string (i.e. “”), then the filtering is performed on all

Page 205 (356)

 Copyright 2010 © Open IPTV Forum e.V.

available channels as defined by ChannelConfig.channelList.

Arguments blocked Flag indicating whether manually blocked
channels SHALL be added to the list.

favourite Flag indicating whether favourite channels
SHALL be added to the list.

hidden Flag indicating whether hidden channels SHALL
be added to the list.

favouriteListID If the value of the favourite flag is true,
indicates which favourites list SHALL be filtered
upon.

Integer startScanstartScanstartScanstartScan(ChannelScanOptions options, ChannelScanParameters
scanParameters)

Description Start a scan for new channels on all available sources. When each source
finishes scanning, an UpdateEvent SHALL be raised with the type
CHANNELS_INVALIDATED and any channel lists for that source SHALL have
been updated.

On IP-only receivers, this method SHALL have no effect.

Arguments options The options to the channel scan operation.

 scanParameters The tuning parameters to be scanned. The value of this
argument SHALL be one of the classes that implements the
ChannelScanParameters interface and SHALL NOT be
an instance of the ChannelScanParameters class.

void stopScanstopScanstopScanstopScan()

Description Stop a channel scan, if one is in progress. Any sources that have not finished
scanning SHALL have their scans aborted and channel line-ups for SHALL NOT be
changed.

On IP-only receivers, this method SHALL have no effect.

ChannelList createChannelListcreateChannelListcreateChannelListcreateChannelList(String bdr)

Description Creates a ChannelList object from the specified SD&S Broadcast Discovery Record.
Channels in the returned channel list will not be included in the channel list that can be
retrieved via calls to getChannelConfig().

Arguments bdr An XML-encoded string containing an SD&S Broadcast Discovery Record as
specified in [OIPF_META2]. If the string is not a valid Broadcast Discovery
Record, this method SHALL return null.

Channel createChannelObjectcreateChannelObjectcreateChannelObjectcreateChannelObject(Integer idType, Integer onid, Integer tsid, Integer
sid, Integer sourceID, String ipBroadcastID)

Page 206 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description Creates a Channel object of the specified idType. The Channel object can
subsequently be used by the setChannel method to switch a tuner to a channel that is
not part of the channel list which was conveyed by the OITF to the server. The scope
of the resulting Channel object is limited to the Javascript environment (incl.
video/broadcast object) to which the Channel object is returned, i.e. it does not get
added to the channellist available through method getChannelConfig.

If the channel of the given idType cannot be created or the given (combination of)
arguments are not considered valid or complete, the method SHALL return null.

If the channel of the given type can be created and arguments are considered valid
and complete, the method SHALL return a Channel object whereby at a minimum the
properties with the same names are given the same value as the given arguments of
the createChannelObject method. The values specified for the remaining properties
of the Channel object are set to undefined.

Arguments idType The type of channel, as indicated by one of the ID_* constants
defined in Section 7.13.12.1.

onid The original network ID. Optional argument that SHALL be specified
when the idType specifies a channel of type ID_DVB_* or
ID_ISDB_*.

tsid The transport stream ID. Optional argument that MAY be specified
when the idType specifies a channel of type ID_DVB_* or
ID_ISDB_*.

sid The service ID. Optional argument that SHALL be specified when
the idType specifies a channel of type ID_DVB_* or ID_ISDB_*.

sourceID The source_ID. Optional argument that SHALL be specified when
the idType specifies a channel of type ID_ATSC_T.

ipBroadcastID The DVB textual service identifier of the IP broadcast service,
specified in the format “ServiceName.DomainName”, or the URI of
the IP broadcast service. Optional argument that SHALL be
specified when the idType specifies a channel of type
ID_IPTV_SDS or ID_IPTV_URI.

7.13.10.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM
2 event

DOM 2 Event properties

onChannelScan ChannelScan � Bubbles: No

� Cancelable: No

� Context Info: type, progress,
frequency, signalStrength,
channelNumber, channelType,
channelCount, transponderCount

Page 207 (356)

 Copyright 2010 © Open IPTV Forum e.V.

onChannelListUpdate ChannelListUpdate � Bubbles: No

� Cancelable: No

� Context Info: none

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the ChannelConfig object itself. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.13.11 The ChannelList class

typedef Collection<Channel> ChannelList

A ChannelList represents a collection of Channel objects. See annex K for the definition of the collection template.

In addition to the methods and properties defined for generic collections, the ChannelList class supports the additional
properties and methods defined below.

7.13.11.1 Methods

Channel getChannelgetChannelgetChannelgetChannel(String channelID)

Description Return the first channel in the list with the specified channel identifier. Returns null if
no corresponding channel can be found.

Arguments channelID The channel identifier of the channel to be retrieved.

Valid values are as defined for the ccid and ipBroadcastID
properties of the Channel object as defined in Section 7.13.12.

Channel getChannelByTripletgetChannelByTripletgetChannelByTripletgetChannelByTriplet(Integer onid, Integer tsid, Integer sid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB
or ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel
identified by this triplet are found, this method SHALL return null.

Arguments onid The original network ID of the channel to be retrieved.

tsid The transport stream ID of the channel to be retrieved. If set to null the
client SHALL retrieve the channel defined by the combination of onid and sid.
This makes it possible to retrieve the correct channel also in case a
remultiplexing took place which led to a changed tsid.

sid The service ID of the channel to be retrieved.

Page 208 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Channel getChannelBySourceIDgetChannelBySourceIDgetChannelBySourceIDgetChannelBySourceID(Integer sourceID)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source
ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourceID The ATSC source_ID of the channel to be returned.

7.13.12 The Channel class

The Channel object represents a broadcast stream or service. It is defined as follows:

7.13.12.1 Constants

The following constants are defined as properties of the Channel class:

Name Value Use

TYPE_TV 0 Used in the channelType property to indicate a TV channel.

TYPE_RADIO 1 Used in the channelType property to indicate a radio channel.

TYPE_OTHER 2 Used in the channelType property to indicate that the type of the channel
is unknown or known but not of type TV or radio.

ID_ANALOG 0 Used in the idType property to indicate an analogue channel identified by
the property freq and optionally cni or name.

ID_DVB_C 10 Used in the idType property to indicate a DVB-C channel identified by the
three properties onid, tsid, sid.

ID_DVB_S 11 Used in the idType property to indicate a DVB-S channel identified by the
three properties onid, tsid, sid.

ID_DVB_T 12 Used in the idType property to indicate a DVB-T channel identified by the
three properties onid, tsid, sid.

ID_DVB_SI_DIRECT 13 Used in the idType property to indicate a channel that is identified through
its delivery system descriptor as defined by DVB-SI [EN 300 468] section
6.2.13.

ID_DVB_C2 14 Used in the idType property to indicate a DVB-C or DVB-C2 channel
identified by the three properties onid, tsid, sid.

ID_DVB_S2 15 Used in the idType property to indicate a DVB-S or DVB-S2 channel
identified by the three properties onid, tsid, sid.

ID_DVB_T2 16 Used in the idType property to indicate a DVB-T or DVB-T2 channel
identified by the three properties onid, tsid, sid.

ID_ISDB_C 20 Used in the idType property to indicate an ISDB-C channel identified by
the three properties: onid, tsid, sid.

Page 209 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Name Value Use

ID_ISDB_S 21 Used in the idType property to indicate an ISDB-S channel identified by
the three properties onid, tsid, sid.

ID_ISDB_T 22 Used in the idType property to indicate an ISDB-T channel identified by
the three properties onid, tsid, sid.

ID_ATSC_T 30 Used in the idType property to indicate a terrestrial ATSC channel
identified by the property sourceID.

ID_IPTV_SDS 40 Used in the idType property to indicate an IP broadcast channel identified
through SD&S by a DVB textual service identifier specified in the format
“ServiceName.DomainName” as value for property ipBroadcastID with
ServiceName and DomainName as defined in [DVB-IPTV]. This idType
SHALL be used to indicate Scheduled content service defined by
[OIPF_PROT2]

ID_IPTV_URI 41 Used in the idType property to indicate an IP broadcast channel identified
by a DVB MCAST URI (e.g. i.e. dvb-mcast://), as value for property
ipBroadcastID.

7.13.12.2 Properties

This section defines the properties of the Channel object.

Properties that do not apply in a specific circumstance (e.g. onid does not apply unless the channel is of type ID_DVB_*
or ID_ISDB_*) SHALL be undefined.

readonly Integer channelTypechannelTypechannelTypechannelType

The type of channel, as indicated by one of the TYPE_* constants defined above.

readonly Integer idTypeidTypeidTypeidType

The type of identification for the channel, as indicated by one of the ID_* constants defined above.

readonly String ccidccidccidccid

Unique identifier of a channel within the scope of the OITF. The ccid is defined by the OITF and SHALL
have prefix ‘ccid: e.g., ‘ccid:{tunerID.}majorChannel{.minorChannel}’.

Note: the format of this string is platform-dependent.

readonly String tunerIDtunerIDtunerIDtunerID

Optional unique identifier of the tuner within the scope of the OITF that is able to receive the given
channel.

Page 210 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Integer onidonidonidonid

DVB or ISDB original network ID (for channels of type ID_DVB_* and ID_ISDB_*); can be undefined if
stream does not contain an SDT Actual.

readonly Integer tsidtsidtsidtsid

DVB or ISDB transport stream ID (for channels of type ID_DVB_* and ID_ISDB_*).

readonly Integer sidsidsidsid

DVB or ISDB service ID (for channels of type ID_DVB_* and ID_ISDB_*).

readonly Integer sourceIDsourceIDsourceIDsourceID

ATSC source_ID value.

readonly Integer freqfreqfreqfreq

For analogue channels, the frequency of the video carrier in kHz.

readonly Integer cnicnicnicni

For analogue channels, the VPS/PDC confirmed network identifier.

readonly String namenamenamename

The name of the channel. Can be used for linking analog channels without CNI. Typically, it will contain the
call sign of the station (e.g. 'HBO'). For channels of type ID_DVB_* the service name is to be used.

readonly Integer majorChannelmajorChannelmajorChannelmajorChannel

The major channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_*.

For channels of type ID_IPTV_SDS the major channel represents the logical channel number. The number
is populated during SD&S and the LogicalChannelNumber element in the Package Discovery
Record[DVB-IPTV].

readonly Integer minorChannelminorChannelminorChannelminorChannel

The minor channel number, if assigned. Value undefined otherwise. Typically used for channels of type
ID_ATSC_*.

Page 211 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String dsddsddsddsd

For channels of type ID_DVB_SI_DIRECT created through createChannelObject(), this property
defines the delivery system descriptor (tuning parameters) as defined by DVB-SI [EN 300 468] section
6.2.13.

The dsd property provides a string whose characters shall be restricted to the ISO Latin-1 character set.
Each character in the dsd represents a byte of a delivery system descriptor as defined by DVB-SI [EN 300
468] section 6.2.13, such that a byte at position "i" in the delivery system descriptor is equal the Latin-1
character code of the character at position "i" in the dsd.

Described in the syntax of ECMAScript: let sdd[] be the byte array of a system delivery descriptor, in which
sdd[0] is the descriptor_tag, then, dsd is its equivalent string, if :

 dsd.length==sdd.length and

 for each integer i : 0<=i<dsd.length holds: sdd[i] == dsd.charCodeAt(i).

readonly Boolean favouritefavouritefavouritefavourite

Flag indicating whether the channel is marked as a favourite channel or not in one of the favourite lists as
defined by the property favIDs.

readonly StringCollection favIDsfavIDsfavIDsfavIDs

The names of the favourite lists to which this channel belongs (see the favouriteLists property on the
ChannelConfig class).

readonly Boolean lockedlockedlockedlocked

Flag indicating whether the current state of the parental control system prevents the channel from being
viewed (e.g. a correct parental control pin has not been entered).

Note that this property supports the option of client-based management of parental control without
excluding server-side implementation of parental control.

readonly Boolean manualBlockmanualBlockmanualBlockmanualBlock

Flag indicating whether the user has manually blocked viewing of this channel. Manual blocking of a
channel will treat the channel as if its parental rating value always exceeded the system threshold.

Note that this property supports the option of client-based management of manual blocking without
excluding server-side management of blocked channels.

readonly String ipBroadcastIDipBroadcastIDipBroadcastIDipBroadcastID

If the Channel has idType ID_IPTV_SDS, this element denotes the DVB textual service identifier of the IP
broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and
DomainName as defined in [DVB-IPTV].

Page 212 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If the Channel has idType ID_IPTV_URI, this element denotes a URI of the IP broadcast service.

readonly Integer channelMaxBitRatechannelMaxBitRatechannelMaxBitRatechannelMaxBitRate

The MaxBitRate associated to the channel is returned through this property. The MaxBitRate is provided
through SD&S as defined in section 3.2.2 of [OIPF_META2]. The property is only related to IP based
broadcast of type ID_IPTV_SDS.

If the field does not exist, this method SHALL return undefined.

readonly Integer channelTTRchannelTTRchannelTTRchannelTTR

The TTR (TimeToRenegotiate) associated to the channel is returned through this property. The MBR is
provided through SD&S as defined in section 3.2.2 of [OIPF_META2]. The property is only related to IP
based broadcast of type ID_IPTV_SDS.

If the field does not exist, this method SHALL return undefined.

7.13.12.3 Metadata extensions to Channel

This subsections SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a type
attribute with values “bcg”, “sd-s”, “eit-pf” or “dvb-si” as defined in Section 9.3.7 in their capability profile.

The OITF SHALL extend the Channel class with the properties and methods described below.

The values of many of these properties are derived from elements in the BCG metadata. For optional elements that are
not present in the metadata, the default value of any property that derives its value from one of those elements SHALL be
undefined.

7.13.12.3.1 Properties

readonly String longNamelongNamelongNamelongName

The long name of the channel. If both short and long names are being transmitted, this property SHALL
contain the long name of the station (e.g. 'Home Box Office'). If the long name is not available, this
property SHALL be undefined.

The value of this property is derived from the Name element that is a child of the BCG
ServiceInformation element describing the channel, where the length attribute of the Name
element has the value ‘long’.

readonly String descriptiondescriptiondescriptiondescription

The description of the channel. If no description is available, this property SHALL be undefined.

The value of this field is taken from the ServiceDescription element that is a child of the BCG
ServiceInformation element describing this channel.

readonly Boolean authorisedauthorisedauthorisedauthorised

Page 213 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Flag indicating whether the receiver is currently authorised to view the channel. This describes the
conditional access restrictions that may be imposed on the channel, rather than parental control
restrictions.

readonly StringCollection genregenregenregenre

A collection of genres that describe the channel.

This field contains the values of. any ServiceGenre elements that are children of the BCG
ServiceInformation element describing the channel

Boolean hiddenhiddenhiddenhidden

Flag indicating whether the channel is included in the default channel list. A value of true means that
the OITF SHALL exclude this channel from the default channel list.

string logoURLlogoURLlogoURLlogoURL

The URL for the default logo image for this channel.

The value of this field is derived from the value of the first Logo element that is a child of the BCG
ServiceInformation element describing the channel. If this element specifies anything other than
the URL of an image, the value of this filed SHALL be undefined.

7.13.12.3.2 Methods

String getFieldgetFieldgetFieldgetField(String fieldId)

Description Get the value of the field referred to by fieldId that is contained in the BCG
metadata for this channel. If the field does not exist, this method SHALL return
undefined.

Arguments fieldId The name of the field whose value SHALL be retrieved.

String getLogogetLogogetLogogetLogo(Integer width, Integer height)

Description Get the URI for the logo image for this channel. The width and height parameters
specify the desired width and height of the image; if an image of that size is not
available, the URI of the logo with the closest available size not exceeding the
specified dimensions SHALL be returned. If no image matches these criteria, this
method SHALL return null.

The URI returned SHALL be suitable for use as the SRC attribute in an HTML IMG
element or as a background image.

The URIs returned by this method will be derived from the values of the Logo
elements that are children of the BCG ServiceInformation element describing the
channel .

Page 214 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Arguments width The desired width of the image

height The desired height of the image

7.13.13 The FavouriteListCollection class

typedef Collection<FavouriteList> FavouriteListCollection

The FavouriteListCollection class represents a collection of FavouriteList objects. See annex K for the
definition of the collection template. In addition to the methods and properties defined for generic collections, the
FavouriteListCollection class supports the additional methods defined below.

7.13.13.1 Methods

FavouriteList getFavouriteListgetFavouriteListgetFavouriteListgetFavouriteList(String favID)

Description Return the first favourite list in the collection with the given favListID.

Arguments favID The ID of a favourite list.

7.13.13.2 Extensions to FavouriteListCollection

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in Section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteListCollection object.

The functionality as described in this section is subject to the security model of Section 10.1.4.8.

FavouriteList createFavouriteListcreateFavouriteListcreateFavouriteListcreateFavouriteList(String name)

Description Create a new favourite list and add it to the collection. The ID of the new favourite list
SHALL be returned.

Arguments name The name to be associated to the new favourite list.

Boolean removeremoveremoveremove(Integer index)

Description Remove the list at the specified index from the collection. This method SHALL return
true of the operation succeeded, or false if an invalid index was specified.

Arguments index The index of the list to be removed.

Boolean commitcommitcommitcommit()

Description Commit any changes to the collection to persistent storage. This method SHALL
return true of the operation succeeded, or false if it failed (e.g. due to insufficient
space to store the collection).

Page 215 (356)

 Copyright 2010 © Open IPTV Forum e.V.

If a server has indicated that it requires control of the tuner functionality of an OITF in
the server capability description for a particular service, then the OITF SHOULD send
an updated Client Channel Listing to the server using HTTP POST over TLS as
described in section 4.8.1.1.

Boolean activateFavouriteListactivateFavouriteListactivateFavouriteListactivateFavouriteList(string favID)

Description Active the favourite list from the collection. This method SHALL return true if the
operation succeeded, or false if an invalid index was specified. A newly created
favourite list has to be committed before it can be activated.

Arguments favID The ID of a favourite list.

7.13.14 The FavouriteList class

typedef Collection<Channel> FavouriteList

The FavouriteList class represents a list of favourite channels. See annex K for the definition of the collection
template. In addition to the methods and properties defined for generic collections, the FavouriteList class supports
the additional properties and methods defined below.

In order to preserve backwards compatibility with already existing DAE content the ECMAScript toString() method
SHALL return the FavouriteList.id for FavouriteList objects.

7.13.14.1 Properties

readonly String favIDfavIDfavIDfavID

A unique identifier by which the favourite list can be identified

String namenamenamename

A descriptive name given to the favourite list

7.13.14.2 Methods

Channel getChannelgetChannelgetChannelgetChannel(String channelID)

Description Return the first channel in the favourite list with the specified channel identifier.
Returns null if no corresponding channel can be found.

Arguments channelID The channel identifier of the channel to be retrieved, which is a value
as defined for property ccid of the Channel object or a value as
defined for property ipBroadcastID of the Channel object as defined
in Section 7.13.12.

Page 216 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Channel getChannelByTripletgetChannelByTripletgetChannelByTripletgetChannelByTriplet(Integer onid, Integer tsid, Integer sid)

Description Return the first (IPTV or non-IPTV) channel in the list that matches the specified DVB
or ISDB triplet (original network ID, transport stream ID, service ID).

Where no channels of type ID_ISDB_* or ID_DVB_* are available, or no channel
identified by this triplet are found, this method SHALL return null.

Arguments onid The original network ID of the channel to be retrieved.

tsid The transport stream ID of the channel to be retrieved. If set to null the
client SHALL retrieve the channel defined by the combination of onid and
sid. This makes it possible to retrieve the correct channel also in case a
remultiplexing took place which led to a changed tsid.

sid The service ID of the channel to be retrieved.

Channel getChannelBySourceIDgetChannelBySourceIDgetChannelBySourceIDgetChannelBySourceID(Integer sourceID)

Description Return the first (IPTV or non-IPTV) channel in the list with the specified ATSC source
ID.

Where no channels of type ID_ATSC_* are available, or no channel with the specified
source ID is found in the channel list, this method SHALL return null.

Arguments sourceID The ATSC source_ID of the channel to be returned.

7.13.14.3 Extensions to FavouriteList

If an OITF has indicated support for extended tuner control (i.e. by giving value true to element
<extendedAVControl> as specified in Section 9.3.6 in its capability description), the OITF SHALL support the
following additional constants and methods on the FavouriteList object.

When the FavouriteList object is updated with new or removed channels it does not take effect until the object is
committed. Only after commit() will the updates of a FavouriteList object become available to other DAE
applications.

The name property of the FavouriteList object SHALL be read/write for OITFs which are controlled by a service
provider. The following methods SHALL also be supported:

Boolean insertBeforeinsertBeforeinsertBeforeinsertBefore(Integer index, String ccid)

Description Insert a new favourite into the favourites list at the specified index. In order to add a
ccid at the end of the favourite list the index shall be equal to length. This method
SHALL return true of the operation succeeded, or false if an invalid index was
specified (e.g. index > length).

Arguments index The index in the list before which the favourite should be inserted.

ccid The ccid of the channel to be added.

Boolean removeremoveremoveremove(Integer index)

Page 217 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Description Remove the item at the specified index from the favourites list. Returns true of the
operation succeeded, or false if an invalid index was specified.

Arguments index The index of the item to be removed.

Boolean commitcommitcommitcommit()

Description Commit any changes to the favourites list to persistent storage. This method SHALL
return true of the operation succeeded, or false if it failed (e.g. due to insufficient
space to store the list on the OITF).

If a server has indicated that it requires control of the tuner functionality of an OITF in
the server capability description for a particular service, then the OITF SHOULD send
an updated Client Channel Listing to the server using HTTP POST over TLS as
described in section 4.8.1.1.

7.13.15 The ChannelScanOptions class

The ChannelScanOptions class defines the options that should be applied during a channel scan operation. This
class does not define parameters for the channel scan itself.

7.13.15.1 Properties

Integer channelTypechannelTypechannelTypechannelType

The types of channel that should be discovered during the scan. Valid values are TYPE_RADIO,
TYPE_TV or TYPE_OTHER as defined in section 7.13.12.1.

Boolean replaceExistingreplaceExistingreplaceExistingreplaceExisting

If true, any existing channels in the channel list managed by the OITF SHALL removed and the new
channel list SHALL consist only of channels found during the channel scan operation. If false, any
channels discovered during the channel scan SHALL be added to the existing channel list.

7.13.16 The ChannelScanParameters class

This is an empty class that acts as the base interface for channel scan parameters specific to certain types of broadcast
network.

7.13.17 The DVBTChannelScanParameters class

The DVBTChannelScanParameters class represents the parameters needed to perform a channel scan on a DVB-T or
DVB-T2 network. This class implements the interface defined by ChannelScanParameters, with the following
additions.

7.13.17.1 Properties

Integer startFrequencystartFrequencystartFrequencystartFrequency

The start frequency of the scan, in kHz.

Page 218 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Integer endendendendFrequencyFrequencyFrequencyFrequency

The end frequency of the scan, in kHz.

String ofdmofdmofdmofdm

The Orthogonal Frequency Division Multiplexing (OFDM) for the indicating frequency. Valid values are:

Value Description

MODE_1K OFDM mode 1K

MODE_2K OFDM mode 2K

MODE_4K OFDM mode 4K

MODE_8K OFDM mode 8K

MODE_16K OFDM mode 16K

MODE_32K OFDM mode 32K

Integer modulationModesmodulationModesmodulationModesmodulationModes

The modulation modes to be scanned. Valid values are:

Value Description

1 QPSK modulation

4 QAM16 modulation

8 QAM32 modulation

16 QAM64 modulation

32 QAM128 modulation

64 QAM256 modulation

More than one of these values may be ORed together in order to indicate that more than one
modulation mode should be scanned.

String bandwidthbandwidthbandwidthbandwidth

The expected bandwidth. Valid values are:

Value Description

Page 219 (356)

 Copyright 2010 © Open IPTV Forum e.V.

BAND_1.7MHZ 1.7 MHz bandwidth

BAND_5MHz 5 MHz bandwidth

BAND_6MHz 6 MHz bandwidth

BAND_7MHz 7 MHz bandwidth

BAND_8MHz 8 MHz bandwidth

BAND_10MHz 10 MHz bandwidth

7.13.18 The DVBSChannelScanParameters class

The DVBSChannelScanParameters class represents the parameters needed to perform a channel scan on a DVB-S or
DVB-S2 network. This class implements the interface defined by ChannelScanParameters, with the following
additions.

7.13.18.1 Properties

Integer startFrequencystartFrequencystartFrequencystartFrequency

The start frequency of the scan, in kHz.

Integer endFreqendFreqendFreqendFrequencyuencyuencyuency

The end frequency of the scan, in kHz.

Integer modulationModesmodulationModesmodulationModesmodulationModes

The modulation modes to be scanned. Valid values are:

Value Description

1 QPSK modulation

2 8PSK modulation

4 QAM16 modulation

More than one of these values may be ORed together in order to indicate that more than one
modulation mode should be scanned.

String symbolRatesymbolRatesymbolRatesymbolRate

A comma-separated list of the symbol rates to be scanned, in symbols/sec.

Integer polarisationpolarisationpolarisationpolarisation

Page 220 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The polarisation to be scanned. Valid values are:

Value Description

1 Horizontal polarisation

2 Vertical polarisation

More than one of these values may be ORed together in order to indicate that more than one
polarisation should be scanned.

String codeRatecodeRatecodeRatecodeRate

The code rate, e.g. “3/4” or “5/6”.

Integer networknetworknetworknetworkIIIIdddd

The network ID of the network to be scanned, or undefined if all networks should be scanned.

7.13.19 The DVBCChannelScanParameters class

The DVBCChannelScanParameters class represents the parameters needed to perform a channel scan on a DVB-C
or DVB-C2 network. This class implements the interface defined by ChannelScanParameters, with the following
additions.

7.13.19.1 Properties

Integer startFrequencystartFrequencystartFrequencystartFrequency

The start frequency of the scan, in kHz.

Integer endFrequencyendFrequencyendFrequencyendFrequency

The end frequency of the scan, in kHz.

Integer modulamodulamodulamodulationModestionModestionModestionModes

The modulation modes to be scanned. Valid values are:

Value Description

4 QAM16 modulation

8 QAM32 modulation

16 QAM64 modulation

32 QAM128 modulation

Page 221 (356)

 Copyright 2010 © Open IPTV Forum e.V.

64 QAM256 modulation

128 QAM1024 modulation

256 QAM4096 modulation

More than one of these values may be ORed together in order to indicate that more than one
modulation mode should be scanned.

String symbolRatesymbolRatesymbolRatesymbolRate

A comma-separated list of the symbol rates to be scanned, in symbols/sec.

Integer networknetworknetworknetworkIIIIdddd

The network ID of the network to be scanned, or undefined if all networks should be scanned.

7.14 Media playback APIs
This section specifies several extensions to the audio object and the video object defined in Section 5.7.1 of [CEA-2014-
A]. It also contains a subsection (i.e. Section 7.14.12) that defines the audio playback from memory API.

7.14.1 The CEA 2014 A/V Control embedded object

An OITF SHALL support a CEA 2014 A/V Control object as defined in Section 5.7.1 of [CEA-2014-A] for all
mandatory media formats as defined in Section 10.1 of [OIPF_MEDIA2].

7.14.1.1 State diagram for A/V control objects

The following state transition diagram SHOULD be used for an A/V control object:

Page 222 (356)

 Copyright 2010 © Open IPTV Forum e.V.

0: stopped

2: paused

stop()
play(x), x<>0

play(x), x<>0

4: buffering

connection establishedconnection lost

play(0)

1: playing

Buffer above start

playback threshold

Buffer underrun

(e.g when seek() is

called)

play(x), x<>0

5: finished

Play position reaches

end of media

play(0)

or

playback reached start

of media during rewind

(i.e. speed < 0)

stop()

or

data(or type) attribute

has changed

or

setSource()

6: error

Playback error

automatic

play(x), x<>0
3: connecting

play(x)

play(0)

play(0)

seek()

Figure 17: State diagram for embedded A/V Control objects

The following clarifications apply:

1) A detailed description for all the states in this state diagram is given in Annex B.5.

2) Scarce resources for playback using the A/V Control object, such as the MPEG decoder, are claimed during state 3
(‘connecting’), state 4 (‘buffering’) or during state transitions from state 3 (‘connecting’) to state 4
(‘buffering’), from state 4 (‘buffering’) to state 1 (‘playing’) or from state 0 ('stopped') or from state 3
('connecting') to state 2 ('paused'). If at any point in time during playback the scarce resources are not available
anymore, due to a resource conflict, then the play state of the A/V Control object SHALL be set to 6 (‘error’) with
a detailed error code of 3 (‘insufficient resources’). Scarce resources for playback using the A/V Control
object SHALL be released when state 6 (‘error’) or 0 (‘stopped’) are reached. In addition, if the A/V Control
object gets destroyed, e.g. because another URL is loaded into the containing window, scarce resources claimed for
playback using the A/V Control object SHALL be released, except in cases described for the optional ‘persist’
property of A/V Control objects.

3) When the ‘data’ attribute and/or the ‘type’ attribute of the HTMLObjectElement representing the A/V Control
object is given a different value, the object SHALL go to state 0 (‘stopped’).

4) For playback of DRM protected content, the rights for playback are retrieved during state 3 (‘connecting’).

Page 223 (356)

 Copyright 2010 © Open IPTV Forum e.V.

5) If the play position reaches the end of the available content the A/V Control object SHALL be set to state 5
(‘finished’) in addition to generating a playback speed change of zero.

If there is an attempt to play() with a speed greater than zero and there is no content available then the request fails.

6) If the play position reaches the beginning of the available content the A/V Control object SHALL be set to state 2
(‘paused’) in addition to generating a playback speed change of zero.

If there is an attempt to play() with a speed less than zero and there is no content available then the request fails.

7) If seek() is performed beyond the available content the request is rejected and the current playout is maintained.

8) The visibility of an A/V Control object SHALL NOT affect its state or its use of scarce resources. An A/V Control
object which is hidden which is hidden using one of the following techniques:

o the CSS visibility or opacity properties
o using the CSS display:none rule
o removed from the document’s DOM
o obscured by other elements
o positioned off the visible area of the screen

SHALL still be decoding video if it is in the playing state and any audio associated with the currently playing media
will still be audible. State transitions caused by calls to methods on the A/V Control object, or due to permanent or
transient errors, will occur as shown above regardless of the visibility of the object. Section 4.4.4 describes the effect
on scarce resources when an A/V Control object is removed from the DOM tree.

9) When an A/V Control object is destroyed (e.g. by the A/V Control object being garbage collected, or because of a
page transition within the application), presentation of streamed audio or video shall be terminated.

7.14.1.2 Using an A/V control object to play stream ing content

If an A/V control object is used to play streamed content using either RTSP or HTTP the OITF then the following holds:

• If play(0) is called in state 0 (‘stopped’), the A/V Control object SHALL automatically go to play state 2
('paused'). The necessary resources are secured and no external signalling is performed.

• If play(0) is called in the connecting or buffering state, the A/V Control object SHALL automatically go to play
state 2 ('paused')

7.14.1.3 Using an A/V control object to play downlo aded content

If an A/V control object is used to play content that has been downloaded and stored on the OITF on the OITF (by using
method setSource() as defined in Section 7.14.8) then the following holds:

1) if the download was triggered using registerDownloadURL or the download was triggered using a Content
Access Download Descriptor with <TransferType> value “playable_download” as defined in Annex E.1, then:

a. if the play() method is called before sufficient data has been download to initiate playback, then the
play state of the A/V Control object SHALL be set to 6 (‘error’) with a detailed error code of 5
(“content not available”).

2) if the downloaded content was triggered using a Content Access Download Descriptor with <TransferType> value
“full_download” as defined in Annex E.1, then:

a. if the play() method is called whilst the content is still downloading and has not yet successfully
completed, then the play state of the A/V Control object SHALL be set to 6 (‘error’) with a detailed
error code of 5 (“content not available”).

7.14.1.4 Using an A/V control object to play record ed content

If an A/V control object is used to play content that has been recorded or is being recorded on the OITF (by using method
setSource() as defined in Section 7.14.8) then the following holds:

Page 224 (356)

 Copyright 2010 © Open IPTV Forum e.V.

� if the play() method is called before sufficient data has been recorded to initiate playback, then the play state of
the A/V Control object SHALL be set to 6 (‘error’) with a detailed error code of 5 (“content not
available”).

7.14.2 Extensions to A/V Control object for playbac k through Content-
Access Streaming Descriptor

As specified in Section 4.7.1, an OITF SHALL support setting up the A/V stream using the information provided by a
valid Content Access Streaming Descriptor referred to by the ‘data’ attribute. To this end, the OITF SHALL fetch the
Content Access Streaming Descriptor from the URL provided by the data attribute, after which the descriptor SHALL
be interpreted, resulting in an appropriate <ContentURL> to be selected (e.g. based on which DRM system the OITF
supports). The OITF SHALL then initiate a streaming CoD session to the selected <ContentURL>, after which playback
can be started when the play() method is invoked.

The OITF SHALL pass included DRM-information of the selected content and DRM system ID as part of the
<DRMControlInformation> elements of a Content Access Streaming Descriptor to the DRM agent, if it supports a
DRM agent with a matching DRMSystemID as per Section 9.3.10.

If the Content Access Streaming Descriptor is not valid according to the XML Schema and semantics as defined in
Annex E.2, the A/V control object SHALL go to playState 6 (i.e. error), with error value 4 as defined in Annex B.

For more information about setting up the A/V stream based on a Content Access Streaming descriptor, see Section
4.7.1, Section 8 and Annex D.

7.14.3 Extensions to A/V Control object for media q ueuing

The following additional method SHALL be supported on the audio object and video object defined in Section 5.7.1 of
[CEA-2014-A].

boolean queuequeuequeuequeue(String uri)

Description Queue the media referred to by uri for playback after the current media item has
finished playing. If a media item is already queued, uri will not be queued for
playback and this method will return false. If the item is queued successfully, this
method returns true. If no media is currently playing, the queued item will be played
immediately.

If uri is null, any currently queued item will be removed from the queue and this
method will return true.

If an A/V Control object is an audio object as defined by Section 5.7.1.b.1 of [CEA-
2014-A] then queued media items shall only contain audio. If an A/V Control object is a
video object as defined by Section 5.7.1.b.2 of [CEA-2014-A] then queued media items
shall always contain video and may also contain audio and other media components.
Applications SHOULD ensure the value of uri refers to a media format appropriate to
the instance of the A/V Control object.

When the current media item has finished playing, the A/V Control object shall
transition to the finished state, update the value of the data property with the URL of
the queued media item and automatically start playback of the queued media item.
The A/V Control object MAY transition to the connecting or buffering states (and
generate the necessary PlayStateChange events) before entering the playing state
when the queued media item is being presented. Implementations may pre-buffer data
from the queued URL before the current media item has finished playing in order to
reduce the delay between items.

If the queued media item can be played without transitioning to the connecting or
buffering states, then the A/V Control object SHALL generate a PlayStateChanged

Page 225 (356)

 Copyright 2010 © Open IPTV Forum e.V.

event to the playing state to indicate that the queued media item has started playing.

If playback of the current media item is stopped using the stop() method, or if the
data property is modified, the queued media item SHALL NOT be played and the
queued media item shall be discarded as if no item was queued.

Play speed is not affected by transitioning between the current and queued media
item.

To avoid race conditions when queuing multiple items for playback, applications
should wait for the currently queued item to begin playback before queuing
subsequent items, e.g. by queuing the subsequent item when the A/V Control object
transitions to the connecting, buffering or playing state for the currently queued
item.

Argument url The media item to be queued, or null to remove the currently-queued
item.

7.14.4 Extensions to A/V Control object for trickmo des

7.14.4.1 Properties

The following additional properties SHALL be supported on the audio object and video object defined in Section 5.7.1 of
[CEA-2014-A].

function onPlaySpeedChangedonPlaySpeedChangedonPlaySpeedChangedonPlaySpeedChanged(Number speed)

The function that is called when the playback speed of the media changes.

The specified function is called with one argument, speed, which is defined as follows:

� Number speed – the playback speed of the media at the time the event was dispatched.

The behaviour of the A/V Control object when the end of media (or the end of the currently-available
media) is reached is defined in Section 7.14.1.

function onPlayPositionChangedonPlayPositionChangedonPlayPositionChangedonPlayPositionChanged(Integer position)

The function that is called when change occurs in the play position of the media due to the use of trick
play functions.

The specified function is called with one argument, position, which is defined as follows:

� position – the playback position of the media at the time the event was dispatched, measured in
milliseconds since the beginning of the referenced media as denoted by the server.

The behaviour of the A/V Control object when the end of media (or the end of the currently-available
media) is reached is defined in section 7.14.1.

readonly Number playSpeedsplaySpeedsplaySpeedsplaySpeeds[]

Returns an ordered list of playback speeds, expressed as values relative to the normal playback speed
(1.0), at which the currently specified A/V content can be played (either through an CEA-2014 audio or

Page 226 (356)

 Copyright 2010 © Open IPTV Forum e.V.

video object), or undefined if the supported playback speeds are not (yet) known.

function onplaySpeedsonplaySpeedsonplaySpeedsonplaySpeedsArrayArrayArrayArrayChangedChangedChangedChanged()

The function that is called when the playSpeeds array values have changed. An application that
makes use of the playSpeeds array needs to read the values of the playSpeeds property again.

readonly String oitfSourceIPAddressoitfSourceIPAddressoitfSourceIPAddressoitfSourceIPAddress

The OITF source IP address for RTSP or HTTP signalling, as well as, the address where the RTSP
stream is expected to arrive. The information shall be available in “buffering”, “paused” or
“playing” states.

readonly String oitfSourcePortAddressoitfSourcePortAddressoitfSourcePortAddressoitfSourcePortAddress

The OITF Port Address where the RTSP stream is expected to arrive. The information shall be
available in “buffering”, “paused” or “playing” states.

Boolean oitfNoRTSPSessionControloitfNoRTSPSessionControloitfNoRTSPSessionControloitfNoRTSPSessionControl

When the oitfNoRTSPSessionControl is set to true then the OITF SHALL NOT signal the RTSP
messages DESCRIBE, SETUP or TEARDOWN.

String oitfRTSPSessionIdoitfRTSPSessionIdoitfRTSPSessionIdoitfRTSPSessionId

The sessionId to be used by the A/V Control Object when signalling RTSP. This property is only
applicable when property oitfNoRTSPSessionControl is set to true.

7.14.4.2 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt properties

onPlaySpeedChanged PlaySpeedChanged Bubbles: No

Cancelable: No

Context Info: speed

onPlayPositionChanged PlayPositionChanged Bubbles: No

Cancelable: No

Context Info: position

Page 227 (356)

 Copyright 2010 © Open IPTV Forum e.V.

onPlaySpeedsArrayChanged PlaySpeedsArrayChanged Bubbles: No

Cancelable: No

Context Info: none

Note: the DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the A/V Control object itself. The third parameter of
addEventListener, i.e. “useCapture”, will be ignored.

7.14.5 Extensions to A/V Control object for playbac k of selected
components

To support the selection of specific A/V components for playback (e.g. a specific subtitle language, audio language, or
camera angle), the classes defined in Sections 7.16.5.2 – 7.16.5.5 SHALL be supported and the constants, properties and
methods defined in Section 7.16.5.1 SHALL be supported on the A/V Control object.

7.14.6 Extensions to A/V Control object for parenta l rating errors

For parental rating errors during playback of A/V content through the CEA-2014 A/V Control object (as defined in
Section 5.7.1 of [CEA-2014-A]) an OITF SHALL support the following intrinsic event properties and corresponding
DOM 2 events for the CEA-2014 A/V Control object

function onParentalRatingChangeonParentalRatingChangeonParentalRatingChangeonParentalRatingChange(String contentID, ParentalRating rating, String
DRMSystemID, Boolean blocked)

The function that is called whenever the parental rating of the content being played inside the A/V Control
object changes.

These events may occur at the start of a new content item, or during playback of a content item (e.g.
during playback of linear TV content).

The specified function is called with four arguments contentID, rating, DRMSystemID, and blocked
which are defined as follows:

� String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise, it MAY be null or
undefined.

� ParentalRating rating – the parental rating value of the currently playing content. The
ParentalRating object is defined in Section 7.9.

� String DRMSystemID –the DRM System ID of the DRM system that generated the event as defined
by element DRMSystemID in Table 8 of Section 3.3.2 of [OIPF_META2]. The value SHALL be null if
the parental control is not enforced by a particular DRM system.

� Boolean blocked – flag indicating whether consumption of the content is blocked by the parental
control system as a result of the new parental rating value.

function onParentalRatingErroronParentalRatingErroronParentalRatingErroronParentalRatingError(String contentID, ParentalRating rating, String

Page 228 (356)

 Copyright 2010 © Open IPTV Forum e.V.

DRMSystemID)

The function that is called when a parental rating error occurs during playback of A/V content inside the
A/V Control object, and is triggered whenever a parental rating value is discovered for a parental rating
system that is not supported by the OITF.

The specified function is called with three arguments contentID, rating, and DRMSystemID which are
defined as follows:

• String contentID – the content ID to which the parental rating change applies. If the event is
generated by the DRM system, it SHALL be the unique identifier for that content in the context of the
DRM system (i.e. in the case of Marlin BB it is the Marlin contentID). Otherwise, it MAY be null or
undefined.

• ParentalRating rating – the parental rating value of the currently playing content. The
ParentalRating object is defined in Section 7.9.

• String DRMSystemID – optional argument that specifies the DRM System ID of the DRM system
that generated the event as defined by element DRMSystemID in Table 8 of Section 3.3.2 of
[OIPF_META2]. The value SHALL be null if the parental control is not enforced by a particular DRM
system.

7.14.6.1 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onParentalRatingChange ParentalRatingChange Bubbles: No

Cancelable: No

Context Info: contentID, rating,
DRMSystemID and blocked

onParentalRatingError ParentalRatingError Bubbles: No

Cancelable: No

Context Info: contentID, rating, and
DRMSystemID.

Note: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. The applications that use
DOM 2 event handlers SHALL call the addEventListener() method on the CEA-2014 A/V embedded object. The
third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.7 Extensions to A/V Control object for DRM rig hts errors

This section SHALL apply to OITF and/or server devices which have indicated support for DRM protection by providing
one or more <drm> elements as specified in Section 9.3.10:

Page 229 (356)

 Copyright 2010 © Open IPTV Forum e.V.

For notifying Javascript about DRM licensing errors during playback of DRM protected A/V content through the CEA-
2014 A/V Control object (as defined by as defined in Section 5.7.1 of CEA-2014-A) an OITF SHALL support the
following intrinsic event property and corresponding DOM 2 event, for the CEA-2014 A/V Control object.

function onDRMRightsErroronDRMRightsErroronDRMRightsErroronDRMRightsError(Integer errorState, String contentID, String
DRMSystemID, String rightsIssuerURL)

The function that is called:

• Whenever a rights error occurs for the A/V content (no license, license invalid), which has led to
blocking consumption of the content.

• Whenever a rights change occurs for the A/V content (license valid), which leads to unblocking the
consumption of the content.

This may occur during playback, recording or timeshifting of DRM protected AV content.The specified
function is called with four arguments errorState, contentID, DRMSystemID and rightsIssuerURL
which are defined as follows:

• Integer errorState – error code detailing the type of error:

0: no license, consumption of the content is blocked.

1: invalid license, consumption of the content is blocked.

2: valid license, consumption of the content is unblocked.

• String contentID – the unique identifier of the protected content in the scope of the DRM system
that raises the error (i.e. in the case of Marlin BB it is the Marlin contentID, in the case of CSPG-CI+
and CSPG-DTCP this field is empty).

• String DRMSystemID – DRMSystemID as defined by element DRMSystemID in Table 8 of Section
3.3.2 of [OIPF_META2]. For example, for Marlin, the DRMSystemID value is
“urn:dvb:casystemid:19188”.

• String rightsIssuerURL – optional element indicating the value of the rightsIssuerURL that can
be used to non-silently obtain the rights for the content item currently being played for which this DRM
error is generated, in cases whereby the rightsIssuerURL is known. Cases whereby the
rightsIssuerURL is known include cases whereby the rightsIssuerURL has been extracted from
the MPEG2_TS of the protected content, retrieved from the SD&S discovery record or from the
associated BCG metadata. The corresponding rightsIssuerURL fields are defined in Section
4.1.3.4 of [OIPF_CSP2] and in section 3.3.2 of [OIPF_META2] respectively. If different URLs are
retrieved from the stream and the metadata, then the conflict resolution is implementation-dependent.

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onDRMRightsError DRMRightsError � Bubbles: No

� Cancelable: No

� Context Info: errorState, contentID,

Page 230 (356)

 Copyright 2010 © Open IPTV Forum e.V.

DRMSystemID, rightsIssuerURL

Note: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a DRMRightsError event during the bubbling or the capturing phase. Applications
that use DOM 2 event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object.
The third parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.8 Extensions to A/V Control object for playing media objects

To support integration between sections 7.12, 7.4.6 and 7.4 of this specification and the A/V Control object defined in
[CEA-2014-A], OITFs SHOULD add the method defined below on the A/V Control object if any of the APIs defined in
those sections are supported.

Boolean setSourcesetSourcesetSourcesetSource(String id)

Description Change the content item to be played by the A/V control object to the content item
represented by id. Valid ids include:

• Download identifiers (i.e. corresponding to property Download.id)

• Recording identifiers (i.e. corresponding to property Recording.id)

• CODAsset identifiers (i.e. corresponding to property CODAsset.uid)

Support for each of these identifier types depends on the support for the individual
sections in which they are defined.

Depending on the type of content for id, the following semantics apply:

If id is a download identifier, the OITF SHALL change the content item to be played to the
downloaded item, or item being downloaded, for which the Download.id property (as
defined in Section 7.4.4.2) corresponds to the given download identifier. The type
attribute of the A/V control object SHOULD change to the MIME type of the content item
represented by the download identifier, or the MIME type of the content item
corresponding to the first content item listed in the Content Access Download Descriptor in
case the download identifier represents a download of a Content Access Download
Descriptor that contains multiple <ContentItem> elements. The data attribute SHALL
change to the same value as the download identifier. Section 7.14.2 defines more details
about playback of downloaded content, and how it relates to the states of the A/V control
object.

If id is a recording identifier, the OITF SHALL change the content item to be played to the
recorded item, or item being recorded, for which the Recording.id property (as defined
in Section 7.10.5.1) corresponds to the given recording identifier. The type attribute of the
A/V control object SHOULD change to the MIME type of the format in which the content
was recorded. The data attribute SHALL change to the same value as the recording
identifier.

If id is a COD asset identifier, the OITF SHALL change the content item to be played to
the CODAsset, for which the CODAsset.uid property (as defined in Section 7.5.5.1)
corresponds to the given COD asset identifier. The type attribute of the A/V control object
SHOULD change to the MIME type of the COD Asset. The data attribute SHALL change
to the same value as to COD asset identifier.

If the content item represented by id can be accepted by the A/V control object for

Page 231 (356)

 Copyright 2010 © Open IPTV Forum e.V.

playback, the method returns true. The method returns false if the item cannot be
accepted for playback.

Arguments id The ID of the item to be played.

7.14.9 Extensions to A/V Control object for UI feed back of buffering A/V
content

The following additional properties and methods SHALL be supported on audio and video objects as defined in Section
5.7.1 of [CEA-2014-A].

7.14.9.1 Properties

function onReadyToPlayonReadyToPlayonReadyToPlayonReadyToPlay()

The function that gets called when enough (as determined by the OITF) of the media after the current
play position has been buffered to start/continue playback.

The specified function shall be called with no arguments.

This event SHALL be generated whenever there is a state transition between state 4 (”buffering”)
and state 1 (”playing”). The event SHALL also be generated at the moment that enough data has
been buffered to start playback, whilst in state 2 (”paused”).

Boolean readyToPlayreadyToPlayreadyToPlayreadyToPlay

Property that can be used to inspect whether or not enough (as determined by the OITF) of the media
after the current play position has been buffered to start playback.

Returns true if enough data has been buffered. Returns false if not enough data has been buffered.

7.14.9.2 Methods

Integer getAvailablePlayTimegetAvailablePlayTimegetAvailablePlayTimegetAvailablePlayTime(Boolean fromPlayPosition)

Description Returns how much content is available for playback.

If argument fromPlayPosition has value true, this method returns an estimate of
how much data in milliseconds is available in the buffer for play back after the current
play position.

If argument fromPlayPosition has value false, this method returns an estimate of
the total buffer length in milliseconds (i.e. this includes all data available in the buffer
before and after the current play position).

Arguments fromPlayPosition Indicates whether the available play time should be
calculated from the current play position onwards, or
from the start of the buffer.

Page 232 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Boolean setBufferingStrategysetBufferingStrategysetBufferingStrategysetBufferingStrategy(String name)

Description Request to change the buffering strategy. Valid values for argument name include:

“sustained_playback”: this is the default strategy, whereby the incoming video
stream should be rendered with as little hiccups or lost frames as possible. This means
that the buffering threshold for triggering an onReadyToPlay event is chosen to be
sufficiently large to deal with variations in network throughput.

“low_latency”: this is a strategy whereby the incoming video stream should be
rendered with an as low as possible latency between receiving the content and the
actual playback of the content. This means that buffering threshold for triggering an
onReadyToPlay event needs to be made sufficiently small in order to playback the
content as soon as possible after it has been received.

The default strategy if the method is not called is “sustained_playback”.

This method can be called during any play state, including play state 1 (‘playing’).

This method returns true if the buffering strategy has been successfully changed to
the preferred buffering strategy. The method returns false if the buffering strategy
has not been successfully changed.

If the OITF does not distinguish between the two modes, the method returns false.

7.14.9.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt
properties

onReadyToPlay ReadyToPlay Bubbles: No

Cancelable: No

Context Info: None

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.10 Extensions to A/V Control object for volume control

7.14.10.1 Methods

The following additional method SHALL be supported on the audio object and video object defined in Section 5.7.1 of
[CEA-2014-A].

Page 233 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Integer getVolumegetVolumegetVolumegetVolume()

Description Returns the actual volume level set; for systems that do not support individual volume
control of players, this method will have no effect and will always return 100.

7.14.11 DOM 2 events for A/V Control object

To make the A/V Control object as defined in CEA-2014-A in line with the other scripting objects in section 7 of this
specification, for the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated
in the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Eve nt
properties

onfocus focus (as specified in Section 1.6.5 of [DOM 2
Events])

Bubbles: No

Cancelable: No

Context Info: None

onblur blur (as specified in Section 1.6.5 of [DOM 2
Events])

Bubbles: No

Cancelable: No

Context Info: None

onPlayStateChange PlayStateChange Bubbles: No

Cancelable: No

Context Info: None

onFullScreenChange FullScreenChange Bubbles: No

Cancelable: No

Context Info: None

Note: these DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving these events during the bubbling or the capturing phase. Applications that use DOM 2
event handlers SHALL call the addEventListener() method on the CEA-2014 A/V Control object. The third
parameter of addEventListener, i.e. “useCapture”, will be ignored.

7.14.12 Playback of memory audio

This section describes specific usage of A/V media object corresponding to memory audio

7.14.12.1 Usage of CE-HTML tags

An <object> element which corresponds to a memory audio SHALL apply following restrictions:

1) The type attribute SHALL be included to define the MIME type that matches the memory audio referred to by the
value of the data attribute. The MIME types for the memory audio SHALL adhere to Section 8.2.1 of
[OIPF_MEDIA2].

Page 234 (356)

 Copyright 2010 © Open IPTV Forum e.V.

2) The file extensions that SHALL be used for the memory audio are:

o “.aac” for HE-AAC memory audio.
o “.wav” for WAVE memory audio.

Only in the case of HE-AAC memory audio, an <object> element MAY contain a <param> element to set the loop
parameter. This parameter indicates the number of times the HE-AAC memory audio will play when play() is called.
The value SHALL be positive integers or the case sensitive string “infinite”, which will play the memory audio
continuously until stop() is called or the data attribute is set to null. The default value of this parameter is “1”. To
give DAE a hint to pre-fetch memory audio from the server when the CE-HTML document is loaded, a <link>
element MAY be used whereby:

7) The rel attribute SHALL be set to a value “prefetch” and the “href” attribute SHALL be set to the URL of the
memory audio which is expected to be pre-fetched. The OITF MAY pre-fetch the audio file referred to by the href
attribute, but is not required to do so.

7.14.12.2 Usage of the DOM interface

The <object> element as defined in Section 7.14.12.1 of this document SHALL be made accessible through the
Javascript A/V Control object specified in [CEA-2014-A], in the following manner:

1) The following attributes SHALL be supported: data, playState, error and onPlayStateChange, as defined
in Req. 5.7.1.f of [CEA-2014-A].

Following methods SHALL be supported: play() and stop(), as defined in Req. 5.7.1.f of [CEA-2014-A]. The
<param> element as defined in Section 7.14.12.1 of this document SHALL be made accessible through the
HTMLParamElement.

7.14.12.3 DAE requirements

If the data attribute of the <object> element for memory audio is set to a valid value and type attribute of the
<object> element indicates the format being HE-AAC, DAE SHALL play the memory audio, as specified below

If the data attribute of the <object> element for memory audio is set to a valid value and type attribute of the <object>
element indicates the format being WAVE, DAE MAY play the memory audio, as specified in bullets 1) and 2) below.

1) When the play() method is called by script, it SHALL start the playback of the memory audio designated by the
data attribute. If the audio file cannot be loaded because of insufficient memory in the OITF, calls to play()
SHALL cause the A/V Control object to move to state 6 (the error state) with the error property set to 3
(“insufficient resources”).

2) When the stop() method is called or the data attribute is set to null by a script, OITF SHALL stop the playback
of the memory audio which had previously played.

If the rel attribute of the <link> element is set to a value “prefetch”, the OITF MAY pre-fetch the memory audio
referred by the href attribute of the <link> element, when the HTML document is loaded to the OITF.

An HE-AAC memory audio need not to be played simultaneously with other HE-AAC memory audio or streamed A/V
contents defined in Section 5.7.1 of [CEA-2014-A].

7.14.12.4 Example usage (Informative)

The following HTML document shows an example of a script to start the playback of memory audio:

<head>
 :
<script type=”text/javascript”>
 function startBGM() {
 document.getElementById(“aid1”).play(1);
 }
 :
</script>
</head>
<body>
<object type="audio/mp4" id="aid1" data="http://www.avsource.com/audio/bgm.aac">
<param name=”loop” value=”infinite”/>
</object>
 :
<div id=”btn1” onclick=” startBGM()”></div>

Page 235 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 :
</body>

The following HTML document shows an example of a script to stop the playback of memory audio:

<head>
 :
<script type=”text/javascript”>
 function stopBGM() {
 document.getElementById(“aid1”).stop();
 }
 :
</script>
</head>
<body>
<object type="audio/mp4" id="aid1" data="http://www.avsource.com/audio/bgm.aac">
<param name=”loop” value=”infinite”/>
</object>
 :
<div id=”btn2” onclick=” stopBGM()”></div>
 :
</body>

7.15 Miscellaneous APIs

7.15.1 The application/oipfMDTF embedded object

If an OITF has indicated support for the multicast delivery terminating function (MDTF) (i.e., <mdtf>true</mdtf>)
as defined in Section 9.3.15 in its capability description, the OITF SHALL support MDTF through the use of the
following non-visual object:

<object type=”application/oipfMDTF”/>

The MDTF API provides the necessary javascript methods to indicate to the MDTF what FLUTE multicast channel it
should join, and what tags it should listen for on those channels.

7.15.1.1 Properties

function onFLUTEListenerResultonFLUTEListenerResultonFLUTEListenerResultonFLUTEListenerResult(String multicastAddress, Integer resultMsg)

This function is called with return result from the methods addFLUTEListener and
removeFLUTEListener.

The specified script function is called with 2 arguments – multicastAddress and resultMsg.

• String multicastAddress – The multicast address associated with the callback.

• Integer resultMsg – result message. Valid values include:

Result
message

Description Semantics

0 Successful The action performed by the underlying functionality was
successful.

1 Unknown error The action performed by the underlying functionality
failed because an unspecified error occurred.

2 Invalid multicast
address

The multicast address is not valid, e.g. bad syntax or out
of range.

3 Multicast address The multicast address does not exist in the listener table.

Page 236 (356)

 Copyright 2010 © Open IPTV Forum e.V.

does not exist

4 No resources There was not enough resources in the OITF to join the
multicast address (only valid for addFLUTEListener).

7.15.1.2 Methods

void addFLUTEListeneraddFLUTEListeneraddFLUTEListeneraddFLUTEListener(String multicastAddress)

Description This method adds a FLUTE channel listener in the OITF.

The result from this method is sent to the callback method onFLUTEListenerResult.

Arguments multicastAddress The multicast address that the OITF should join in order to
listen.

void addFLUTEListenerTagsaddFLUTEListenerTagsaddFLUTEListenerTagsaddFLUTEListenerTags(String multicastAddress, String tags, String
downloadCallback)

Description This method adds tags that the FLUTE listener should listen for.

The result from this method is sent to the callback method onFLUTEListenerResult.

Arguments multicastAddress The multicast address that the OITF should join in order to
listen.

tags A comma separated list of tags that the OITF should listen for
on the FLUTE channel.

downloadCallback Optional. This callback function is called when an object has
been downloaded. The arguments to this function are the
Content Location URI of the downloaded object and the
Content-Type.

StringCollection getFLUTEListenersgetFLUTEListenersgetFLUTEListenersgetFLUTEListeners()

Description Returns a collection of multicast addresses for the FLUTE channels that the OITF
listens to.

String getTagsgetTagsgetTagsgetTags(String multicastAddress)

Description Returns a comma-separated list of the tags associated with a particular multicast
address.

void removeFLUTEListenerremoveFLUTEListenerremoveFLUTEListenerremoveFLUTEListener(String multicastAddress)

Description Removes the associated listener.

The result from this method is sent to the callback method onFLUTEListenerResult.

Page 237 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Arguments multicastAddress The multicast address that the OITF should leave.

7.15.1.3 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onFLUTEListenerResult FLUTEListenerResult Bubbles: No

Cancelable: No

Context Info: multicastAddress,
resultMsg

NOTE: the above DOM 2 event is directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving a ReceiveRemoteMessage event during the bubbling or the capturing phase.
Applications that use DOM 2 event handlers SHALL call the addEventListener() method on the
application/oipfRemoteControlFunction object. The third parameter of addEventListener, i.e. “useCapture”, will
be ignored.

7.15.2 The application/oipfStatusView embedded obje ct

7.15.2.1 Overview of download status

The following embedded objects allow a visualization of the native download manager to be included as part of the UI
coming from a (third party) server, without the need for any security model, and without compromising security and
privacy.

An OITF SHALL support the application/oipfStatusView embedded object. This is a visual object that can be
included in a HTML document, and is subject to the following CSS-properties: width, height, position, float,
top, left, right, bottom, vertical-align, padding, and padding-* properties, margin, and margin-*
properties, border, and border-* properties, visibility, and display. This embedded object SHALL provide an
overall consistent graphical view of the status of the current downloads, the content that has been downloaded, and/or the
content that has been recorded, as denoted by the states:

• “list_of_recent_downloads”: shows the progress of the most recently started downloads, with the amount of
items shown as specified by <param> element with the name “nritems”.

• “list_of_downloaded_content”: shows the list of items that have been successfully downloaded, with the
amount of items shown as specified by <param> element with the name “nritems”.

The object SHALL support a <param> element with the name “state”, which indicates the state that SHALL be
visualized inside the object. An OITF that has indicated support for downloading content in its capability description (i.e.
<download>true</download>) SHALL at least support the monitor states “list_of_recent_downloads” and
“list_of_downloaded_content”. An OITF MAY support the visualization of additional states. An OITF SHALL
silently ignore a request to visualize a state that it does not support; if this results in no state information being visualized
at all (because the each <param> element with name state referred to a non-supported state), the
application/oipfStatusView object SHALL NOT be visualized and the object will have CSS width and
height values of 0.

Page 238 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The object SHALL support a <param> element with the name “nritems”, which indicates the number of items that
should be shown for the given state.

The object SHALL also support the inclusion of style hints through <param> elements. At least the “background-
color” and “font-size” style hints SHALL be supported using the syntax defined by CSS 2.1. An OITF MAY
support additional style hints in addition to “background-color” and “font-size”. Additional style hints SHALL
also follow the CSS 2.1 syntax. An OITF SHALL silently ignore any style hints that it does not support.

Next to these parameters, the object SHALL support methods getMinimumItemWidth() and
getMinimumItemHeight() as defined in Section 7.15.2.1.1.

Example usage:

<object id=”d1” type=”application/oipfStatusView” width=”200” height=”100”>
 <param name=”state” value=”list_of_recent_downloads”/>
 <param name=”nritems” value=”2”/>
 <param name=”background-color” value=”black”/>
 <param name=“font-size” value=“16px”/>
</object>

NOTE: this object is intended to allow services to link in to the privileged functionality of accessing privacy sensitive
download information, without the need for certificates and privileged access requests. In certain managed network
deployments this may not be sufficient. The application/oipfDownloadManager API described in Section 7.4.3
provides more extensive APIs which provide Javascript control for a service platform provider over such highly
privileged functionality.

7.15.2.1.1 Methods

Integer getMinimgetMinimgetMinimgetMinimumItemWidthumItemWidthumItemWidthumItemWidth(String state)

Description Returns the minimum width needed for rendering the name, status and other data of
the downloaded items for the given state (e.g. “list_of_recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings
that are defined for <param> element with the name “state” (e.g.
“list_of_recent_downloads”).

Integer getMinimumItemHeightgetMinimumItemHeightgetMinimumItemHeightgetMinimumItemHeight(String state)

Description Returns the minimum height needed for rendering the name, status and other data of
the downloaded items for the given state (e.g. “list_of_recent_downloads”).

Arguments state The state for which the visualization is requested. This is one of the strings
that are defined for <param> element with the name “state” (e.g.
“list_of_recent_downloads”).

7.15.2.2 Overview of recordings

An OITF that has indicated support for control of its recording functionality by a server (i.e.,
<record>true</record>) SHALL support the application/oipfStatusView embedded object defined in
Section 7.15.2.1, for which it SHALL at least support the following additional monitor state:

• “list_of_recorded_content”: shows the list of items that have been recorded or that are currently being recorded, with
the amount of items shown as specified by <param> element with the name “nritems”.

NOTE: this object is intended to allow services to link in to highly privileged functionality, without the need for
certificates and privileged access requests. In certain managed network deployments this may not be sufficient.

Page 239 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Therefore, section 7.10.4 defines more extensive APIs which provide Javascript control for a service platform provider
over such highly privileged functionality.

7.15.3 The application/oipfCapabilities embedded ob ject

The OITF SHALL support following non-visual embedded object with the mime type
application/oipfCapabilities.

7.15.3.1 Properties

readonly Document xmlCapabilitiesxmlCapabilitiesxmlCapabilitiesxmlCapabilities

Returns the OITF’s capability description as an XML Document object using the syntax as defined in
Annex F without using any namespace definitions.

readonly Number extraSDVideoDecodesextraSDVideoDecodesextraSDVideoDecodesextraSDVideoDecodes

This property holds the number of possible additional decodes for SD video. Depending on the current
usage of system resources this value may vary. The value of this property is likely to change if an HD
video is started.

Adding an A/V Control object or video/broadcast object may still fail, even if extraSDVideoDecodes is
larger than 0. For A/V Control objects, in case of failure the play state for the A/V Control object shall
be set to 6 (error) with a detailed error code of 3 (‘insufficient resources’). For video/broadcast objects,
in case of failure the play state of the A/V Control object shall be set to 0 (unrealized) with a detailed
error code of 11 (‘insufficient resources’).

readonly Number extraHDVideoDecodesextraHDVideoDecodesextraHDVideoDecodesextraHDVideoDecodes

This property holds the number of possible additional decodes for HD video. Depending on the current
usage of system resources this value may vary. The value of this property is likely to change if an SD
video is started.

Adding an A/V Control object or video/broadcast object may still fail, even if extraHDVideoDecodes is
larger than 0. For A/V Control objects, in case of failure the play state for the A/V Control object shall
be set to 6 (error) with a detailed error code of 3 (‘insufficient resources’). For video/broadcast objects,
in case of failure the play state of the A/V Control object shall be set to 0 (unrealized) with a detailed
error code of 11 (‘insufficient resources’).

7.15.3.2 Methods

Boolean hasCapabilityhasCapabilityhasCapabilityhasCapability(String profileName)

Description Check if the OITF supports the passed capability.

Returns true if the OITF supports the passed capability, false otherwise.

Arguments profileName An OIPF base UI profile string or a UI Profile name fragment string as
defined in Section 9.2.

Page 240 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Examples of valid values are “OITF_HD_UIPROF” or “+PVR”.

7.15.4 The Navigator class

The Navigator object represents the identity of the OITF. This is intended to be equivalent to the Navigator
interface as defined in section 6.8 of [HTML5].

7.15.4.1 Properties

readonly String appNameappNameappNameappName

Returns the name of the browser. If supported, this corresponds to the <appName> element in the
user-agent header as defined in Section 8.1.1. Otherwise, it SHALL be the empty string.

readonly String appVersionappVersionappVersionappVersion

Returns the version of the browser. If supported, this corresponds to the <appVersion> element in the
user-agent header as defined in Section 8.1.1. Otherwise, it SHALL be the empty string.

7.15.5 Debug print API

The following method is available on the global (Window) object.

void debugdebugdebugdebug(DOMString arg)

Description Let the application developer print debug information on the debug output (for
example, a console, a serial link or a file). The means to access this debug output is
outside the scope of this specification and implementation-dependent.

A line feed character SHALL NOT be inserted automatically at the end of the string by
the implementation.

Example:

debug("[APP] value = " + value + "\n");

Arguments arg String to print on the debug output.

7.16 Shared Utility classes and features

7.16.1 The StringCollection class

typedef Collection<String> StringCollection

The StringCollection class represents a collection of String objects. See annex K for the definition of the
collection template.

Page 241 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.16.2 The Programme class

The Programme class represents an entry in a programme schedule.

Note: as described in the record(Programme programme) method of the
application/oipfRecordingScheduler object, only the programmeID property of the programme object is
used to determine the programme or series that will be recorded. The other properties are solely used for annotation of
the (scheduled) recording with programme metadata. The use of these metadata properties is optional. If such programme
metadata is provided, it is retained in the ScheduledRecording object that is returned if the recording of the
programme was scheduled successfully.

7.16.2.1 Constants

The following constants are defined as properties on the Programme class.

Name Value Use

ID_TVA_CRID 0 Used in the programmeIDType property to indicate that the programme is
identified by its TV-Anytime CRID (Content Reference Identifier).

ID_DVB_EVENT 1 Used in the programmeIDType property to indicate that the programme is
identified by a DVB URL referencing a DVB-SI event as enabled by section
4.1.3 of [OIPF_META2]. OPTIONAL.

7.16.2.2 Properties

String namenamenamename

The short name of the programme, e.g. 'Star Trek: DS9'.

String longNamelongNamelongNamelongName

The long name of the programme, e.g. 'Star Trek: Deep Space Nine'. If the long name is not available,
this property will be undefined.

String descriptiondescriptiondescriptiondescription

The description of the programme, e.g. an episode synopsis. If no description is available, this property
will be undefined.

String longDescriptionlongDescriptionlongDescriptionlongDescription

The long description of the programme. If no description is available, this property will be undefined.

Integer startTimestartTimestartTimestartTime

The start time of the programme, measured in seconds since midnight (GMT) on 1/1/1970.

Page 242 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Integer durationdurationdurationduration

The duration of the programme (in seconds).

String channelIDchannelIDchannelIDchannelID

The identifier of the channel from which the broadcasted content is to be recorded. Specifies either a
ccid or ipBroadcastID (as defined by the Channel object in Section 7.13.12)

Integer episodeepisodeepisodeepisode

The episode number for the programme if it is part of a series. This property is undefined when the
programme is not part of a series or the information is not available.

Integer totalEpisodestotalEpisodestotalEpisodestotalEpisodes

If the programme is part of a series, the total number of episodes in the series. This property is
undefined when the programme is not part of a series or the information is not available.

String programmeIDprogrammeIDprogrammeIDprogrammeID

The unique identifier of the programme or series, e.g., a TV-Anytime CRID (Content Reference
Identifier).

Integer programmeIDTypeprogrammeIDTypeprogrammeIDTypeprogrammeIDType

The type of identification used to reference the programme, as indicated by one of the ID_* constants
defined above.

readonly ParentalRatingCollection parentalRatingparentalRatingparentalRatingparentalRating

A collection of parental rating values for the programme for zero or more parental rating schemes
supported by the OITF. For instances of the Programme class created by the createProgramme()
method defined in section 7.10.1.1, the initial value of this property (upon creation of the Programme
object) is an instance of the ParentalRatingCollection object (as defined in Section 7.9.5) with
length 0. Parental rating values can be added to this empty readonly parental rating collection by using
the addParentalRating() method of the ParentalRatingCollection object. The
ParentalRatingCollection is defined in Section 7.9.5. The related ParentalRating and
ParentalRatingScheme objects are defined in Section 7.9.4 and 7.9.2 respectively.

For instances of the Programme class returned through the metadata APIs defined in section 7.12 or
through the programmes property of the video/broadcast object defined in section 7.13.3, the initial
value of this property SHALL include the parental rating value(s) carried in the metadata or DVB-SI
entry describing the programme, if this information is included.

Note that if the service provider specifies a certain parental rating (e.g. PG-13) through this property
and the actual parental rating extracted from the stream says that the content is rated PG-16, then the

Page 243 (356)

 Copyright 2010 © Open IPTV Forum e.V.

conflict resolution is implementation dependent.

7.16.2.3 Metadata extensions to Programme

The OITF SHALL extend the Programme class defined in section 7.16.2 with the properties and methods described
below.

This subsection SHALL apply for OITFs that have indicated <clientMetadata> with value “true” and a type
attribute with values “bcg”, “eit-pf” or “dvb-si” as defined in Section 9.3.7 in their capability profile.

7.16.2.3.1 Properties

readonly Channel channelchannelchannelchannel

Reference to the broadcast channel where the programme is available.

The value of this field is derived from the serviceIDref attribute of the Schedule element that refers
to this programme.

readonly Boolean blockedblockedblockedblocked

Flag indicating whether the programme is blocked due to parental control settings or conditional access
restrictions.

The blocked and locked properties work together to provide a tri-state flag describing the status of a
programme. This can best be described by the following table:

Description blocked locked

No parental control applies. false false

Item is above the parental rating threshold (or manually blocked); no PIN has
been entered to view it and so the item cannot currently be viewed.

true true

Item is above the parental rating threshold (or manually blocked); the PIN has
been entered and so the item can be viewed.

true false

readonly Integer showTypeshowTypeshowTypeshowType

Flag indicating the type of show (live, first run, rerun, etc,).

The value of this property is determined by the child elements of the programme’s BroadcastEvent or
ScheduleEvent element from the Program Location Table. Values are determined as follows:

Value Description

1 The programme is live; indicated by the presence of a Live element
with a value attribute set to true.

2 The programme is a first-run show; indicated by the presence of a
FirstShowing element with a value attribute set to true.

Page 244 (356)

 Copyright 2010 © Open IPTV Forum e.V.

3 The programme is a rerun; indicated by the presence of a Repeat
element with a value attribute set to true.

If none of the above conditions are met, the default value of this field SHALL be 2.

readonly Boolean subtitlessubtitlessubtitlessubtitles

Flag indicating whether subtitles or closed-caption information is available.

This flag SHALL be true if one or more BCG CaptionLanguage elements are present in this
programme’s description, false otherwise.

readonly Boolean isHDisHDisHDisHD

Flag indicating whether the programme has high-definition video.

This flag SHALL be true if a VerticalSize element is present in the programme’s description and
has a value greater than 576, false otherwise.

readonly Integer audioTypeaudioTypeaudioTypeaudioType

Bitfield indicating the type of audio that is available for the programme.

The value of this field is determined by the NumOfChannels elements in a programme’s A/V attributes.
Values are determined as follows:

Value Description

1 A mono audio stream is available (at least one AvAttributes.AudioAttributes element
is present which has a child NumOfChannels element whose value is 1).

2 A stereo audio stream is available (at least one AvAttributes.AudioAttributes element
is present which has a child NumOfChannels element whose value is 2).

4 A multi-channel audio stream is available (at least one AvAttributes.AudioAttributes
element is present which has a child NumOfChannels element whose value is greater than
2).

For programmes with multiple audio streams, these values may be ORed together.

readonly Boolean isMultilingualisMultilingualisMultilingualisMultilingual

Flag indicating whether more than one audio language is available for the programme.

This flag SHALL be true if more than one BCG Language element is present in the programme’s
description, false otherwise.

readonly StringCollection genregenregenregenre

Page 245 (356)

 Copyright 2010 © Open IPTV Forum e.V.

A collection of genres that describe this programme.

The value of this field is the concatenation of the values of any Name elements that are children of
Genre elements in the programme’s description.

readonly Boolean hasRecordinghasRecordinghasRecordinghasRecording

Flag indicating whether the Programme has a recording associated with it (either scheduled, in
progress, or completed).

readonly StringCollection audioLanguagesaudioLanguagesaudioLanguagesaudioLanguages

Supported audio languages, indicated by iso639 language codes.

readonly StringCollection subtitleLanguagessubtitleLanguagessubtitleLanguagessubtitleLanguages

Supported subtitle languages, indicated by iso639 language codes.

readonly Boolean lockedlockedlockedlocked

Flag indicating whether the current state of the parental control system prevents the programme from
being viewed (e.g. a correct parental control PIN has not been entered to allow the programme to be
viewed).

7.16.2.3.2 Methods

String getFieldgetFieldgetFieldgetField(String fieldId)

Description Get the value of the field referred to by fieldId that is contained in the metadata for
this programme. If the field does not exist, this method SHALL return undefined.

Arguments fieldId The name of the field whose value SHALL be retrieved.

7.16.2.4 DVB-SI extensions to Programme

The following method SHALL be added to the Programme object, if the OITF has indicated support for accessing
DVB-SI information, by giving the value “true” to element <clientMetadata> and the value “dvb-si” or “eit-
pf” to the type attribute of that element as defined in Section 9.3.7 in their capability profile.

StringCollection getSIDescriptorsgetSIDescriptorsgetSIDescriptorsgetSIDescriptors(Integer descriptorTag, Integer

 descriptorTagExtension)

Description Get the contents of the descriptor specified by descriptorTag from the DVB SI EIT
programme's descriptor loop. If more than one descriptor with the specified tag is
available for the given programme, the contents of all matching descriptors SHALL be

Page 246 (356)

 Copyright 2010 © Open IPTV Forum e.V.

returned in the order the descriptors are found in the stream.

The descriptor content bytes SHALL be encoded in a string whose characters shall be
restricted to the ISO Latin-1 character set. Each character in the string represents a
byte of a DVB-SI descriptor, such that a byte at position "i" in the descriptor is equal
the Latin-1 character code of the character at position "i" in the string.

Described in the syntax of ECMAScript: let desc[] be the byte array of a descriptor, in
which desc[0] is the descriptor_tag, then, the returned string (retval in the example
below) is its equivalent string, if :

 desc.length==retval.length and

 for each integer i : 0<=i<desc.length holds

 desc[i] == retval.charCodeAt(i).

If the descriptor specified by descriptorTag and (optionally)
descriptorTagExtension does not exist, or if the metadata for this programme was
retrieved from a source other than DVB-SI, this method SHALL return null.

If metadata for this programme has not yet been retrieved, this method SHALL return
undefined. If the OITF supports the application/oipfSearchManager object as
defined in Section 7.12.1, the OITF SHALL notify applications of the availability of
additional metadata via MetadataSearchEvents targeted at the
application/oipfSearchManager object used to retrieve the programme
metadata.

Arguments descriptorTag The descriptor tag as specified by [EN 300 468].

 descriptorTagExtension An optional argument giving the descriptor tag
extension as specified by [EN 300 468].

7.16.2.5 Recording extensions to Programme

The OITF SHALL support the following extensions to the Programme class.

Clients supporting the recording management APIs defined in this section SHALL indicate this by adding the attribute
manageRecordings to the <recording> element with a value unequal to ”none” in the client capability description
as defined in section 9.3.3.

The functionality as described in this section is subject to the security model of Section 10.

readonly ScheduledRecording scheduledRecordingscheduledRecordingscheduledRecordingscheduledRecording

If available, this property represents the scheduled recording associated with this programme. Has
value undefined if this programme has no scheduled recording associated with it.

readonly RecordingCollection recordingsrecordingsrecordingsrecordings

The list of in-progress or completed recordings associated with this programme, sorted by start time in
increasing order.

Page 247 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7.16.3 The ProgrammeCollection class

typedef Collection<Programme> ProgrammeCollection

The ProgrammeCollection class represents a collection of Programme objects. See annex K for the definition of
the collection template.

7.16.4 The DiscInfo class

The DiscInfo class provides details of the storage usage and capacity in the OITF.

7.16.4.1 Properties

readonly Integer ffffreereereeree

The space (in megabytes) available on the storage device for recordings.

readonly Integer totaltotaltotaltotal

The total capacity (in megabytes) of the storage device. Depending upon the system, free MAY be less
than total even with no recordings as some of the disc space MAY be used for management purposes.

readonly Integer reservedreservedreservedreserved

The space (in megabytes) reserved for scheduled or ongoing recordings and downloads.

7.16.5 Extensions for playback of selected media co mponents

This section defines APIs for the selection of specific A/V components for playback.

NOTE: The term component may correspond to MPEG_2 components, but is not restricted to that.

7.16.5.1 Media playback extensions

7.16.5.1.1 Constants

The following constants are defined as properties on any objects implementing this section:

Name Value Use

COMPONENT_TYPE_VIDEO 0 Represents a video component. This constant is used for all
video components regardless of encoding.

COMPONENT_TYPE_AUDIO 1 Represents an audio component. This constant is used for all
audio components regardless of encoding.

COMPONENT_TYPE_SUBTITLE 2 Represents a subtitle component. This constant is used for all
subtitle components regardless of subtitle format. NOTE: A

Page 248 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Name Value Use

subtitle component may also be related to closed captioning as
part of a video stream.

7.16.5.1.2 Properties

function onSelectedComponentChangedonSelectedComponentChangedonSelectedComponentChangedonSelectedComponentChanged(Integer componentType)

This function is called when there is a change in the set of components being presented. This may
occur if one of the currently selected components is no longer available and an alternative is chosen
based on user preferences, or when presentation has changed due to a different component or set of
components being selected.

OITFs MAY optimise event dispatch by dispatching a single event in response to several calls to
selectComponent() or unselectComponent() made in rapid succession.

The specified function is called with one argument:

• Integer componentType - The type of component whose presentation has changed, as
represented by one of the constant values listed in section 0. If more than one component type
has changed, this argument will take the value undefined.

7.16.5.1.3 Methods

AVComponentCollection getComponentsgetComponentsgetComponentsgetComponents(Integer componentType)

Description Returns a collection of AVComponent values representing the components of the
specified type in the current stream. If componentType is set to null or undefined then
all the currently active components are returned.

One or more of the components returned MAY be passed back to one of the other
methods unchanged (e.g. selectComponent()).

If property preferredAudioLanguage in the Configuration object (refer to section
7.3.2.1) is set then a component is by default selected and is considered as an active
component.

If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.2.1) is set and property subtitleEnabled in AVOutput class (refer to section
7.3.5.1) is enabled then a component is by default selected and is considered as an
active component.

Argument componentType The type of component to be returned , as represented by
one of the constant values listed in section 0.

AVComponentCollection getCurrentActiveComponentsgetCurrentActiveComponentsgetCurrentActiveComponentsgetCurrentActiveComponents(Integer componentType)

Description Returns a collection of AVComponent values representing the currently active
components of the specified type that are being rendered.

One or more of the components returned MAY be passed back to one of the other

Page 249 (356)

 Copyright 2010 © Open IPTV Forum e.V.

methods unchanged (e.g. selectComponent()).

Argument componentType The type of currently active component to be returned.
represented by one of the constant values listed in section 0.

void selectComponentselectComponentselectComponentselectComponent(AVComponent component)

Description Select the component that will be subsequently rendered when A/V playback starts or
select the component for rendering if A/V playback has already started.

If playback has started, this SHALL replace any other components of the same type
that are currently playing.

If property preferredAudioLanguage in the Configuration object (refer to section
7.3.2.1) is set then a component is by default selected and it is not necessary to
perform selectComponent().

If property preferredSubtitleLanguage in the Configuration object (refer to section
7.3.2.1) is set and property subtitleEnabled in AVOutput class (refer to section
7.3.5.1) is enabled then a component is by default selected and it is not necessary to
perform selectComponent().

Argument component A component object available in the stream currently being
played.

void unselectComponentunselectComponentunselectComponentunselectComponent(AVComponent component)

Description Stop rendering of the specified component of the stream.

If property preferredAudioLanguage in the Configuration object (see section 7.3.2.1)
is set then unselecting a specific component returns to the default preferred audio
language.

If property preferredSubtitleLanguage in the Configuration object (see section
7.3.2.1) is set and property subtitleEnabled in AVOutput class (see section 7.3.5.1) is
enabled then unselecting a specific component returns to the default preferred subtitle
language. In order to stop rendering subtitles completely it is necessary to disable
subtitles with property subtitleEnabled in AVOutput class.

Argument component The component to be stopped.

void selectComponentselectComponentselectComponentselectComponent(Integer componentType)

Description If A/V playback has already started, start rendering the default component of the
specified type in the current stream. This SHALL replace any other components of the
same type that are currently playing.

If A/V playback has not started, the default component of the specified type will be
subsequently rendered after calling the setChannel method on the
video/broadcast object.

Argument componentType The type of component for which the default component
should be rendered.

Page 250 (356)

 Copyright 2010 © Open IPTV Forum e.V.

void unselectComponentunselectComponentunselectComponentunselectComponent(Integer componentType)

Description If A/V playback has already started, stop rendering of the specified type of component.
If A/V playback has not started, no components of the specified type will be
subsequently rendered after calling the setChannel method on the
video/broadcast object.

Argument component The type of component to be stopped.

7.16.5.1.4 Events

For the intrinsic event “onSelectedComponentChange”, corresponding DOM level 2 events SHALL be generated, in
the following manner:

Intrinsic event Corresponding DOM 2 event DOM 2 Event properties

onSelectedComponentChange SelectedComponentChange Bubbles: No

Cancelable: No

Context Info: componentType

7.16.5.2 The AVComponent class

AVComponent represents a component within a complete media stream - a single stream of video, audio or data that can
be played or manipulated. This is not necessary for basic playback, record or EPG services. However, it provides a
mechanism to get at extended streams for enhanced services.

For forward compatibility the DAE application SHALL check the value of the type property to ensure that it is
accessing an AVComponent object of the correct type.

7.16.5.2.1 Properties

readonly Integer componentTagcomponentTagcomponentTagcomponentTag

The component tag identifies a component. The component tag identifier corresponds to the
component_tag in the component descriptor in the ES loop of the stream in the PMT [EN 300 468], or
undefined if the component is not carried in an MPEG-2 TS .

readonly Integer pidpidpidpid

The MPEG Program ID (PID) of the component in the MPEG2-TS in which it is carried, or undefined
if the component is not carried in an MPEG-2 TS.

readonly Integer typetypetypetype

Type of the component stream. Valid values for this field are given by the constants listed in section
7.16.5.1.1.

Page 251 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly String encodingencodingencodingencoding

The encoding of the stream. The value of video format or audio format defined in section 3 of
[OIPF_MEDIA2] SHALL be used.

readonly Boolean encryptedencryptedencryptedencrypted

Flag indicating whether the component is encrypted or not.

7.16.5.3 The AVVideoComponent class

The AVVideoComponent class implements the AVComponent interface.

7.16.5.3.1 Properties

readonly Number aspectRatioaspectRatioaspectRatioaspectRatio

Indicates the aspect ratio of the video or undefined if the aspect ratio is not known. Values SHALL be
equal to width divided by height, rounded to a float value with two decimals, e.g. 1.78 to indicate 16:9
and 1.33 to indicate 4:3.

7.16.5.4 The AVAudioComponent class

The AVAudioComponent class implements the AVComponent interface.

7.16.5.4.1 Properties

readonly String languagelanguagelanguagelanguage

An ISO 639 language code representing the language of the stream.

readonly Boolean audioDescriptionaudioDescriptionaudioDescriptionaudioDescription

Has value true if the stream contains an audio description intended for people with a visual impairment,
false otherwise.

readonly Integer audioChannelsaudioChannelsaudioChannelsaudioChannels

Indicates the number of channels present in this stream (e.g. 2 for stereo, 5 for 5.1, 7 for 7.1).

7.16.5.5 The AVSubtitleComponent class

The AVSubtitleComponent class implements the AVComponent interface

7.16.5.5.1 Properties

readonly String languagelanguagelanguagelanguage

An ISO 639 language code representing the language of the stream.

Page 252 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Boolean hearingImpairedhearingImpairedhearingImpairedhearingImpaired

Has value true if the stream is intended for the hearing-impaired (e.g. contains a written description of
the sound effects), false otherwise.

7.16.5.6 The AVComponentCollection class

typedef Collection<AVComponent> AVComponentCollection

An AVComponentCollection represents a collection of AVComponentCollection objects. See annex K for the
definition of the collection template.

7.17 DLNA RUI Remote Control Function APIs
This section defines the APIs related to the DLNA RUI RCF.

The DLNA RUI RCF APIs provide the necessary javascript properties and methods for a DAE application to
communicate with Remote Control Devices and provide a Control UI (i.e. one or more CE-HTML documents that enable
the DAE application to be controlled from the Remote Control Device) on such devices. Using these APIs, Remote
Control Devices can:

• obtain a Control UI from the OITF or the IPTV Applications server via the OITF,

• send information such as control messages to the OITF and

• receive information from the OITF.

This section SHALL apply for OITFs that have indicated <remoteControlFunction> with value “true” as defined
in Section 9.3.17 in its capability description.

7.17.1 The application/oipfRemoteControlFunction em bedded object

OITFs that have indicated <remoteControlFunction> with value “true” SHALL support the DLNA RUI RCF APIs
through the use of the following non-visual embedded object:

<object type=”application/oipfRemoteControlFunction”/>

7.17.1.1 Constants

The following constants are defined as properties of the application/oipfRemoteControlFunction embedded
object:

Constant name Numeric
Value

Use

REQUEST_CUI 0 A Remote Control Device (a Control UI or an XML UI Listing)
requests a control UI by using the pre-defined URI
“/rcf/request_cui”.

REQUEST_MSG 1 A Control UI in the Remote Control Device sends a message
by using the pre-defined URI “/rcf/request_msg”.

Page 253 (356)

 Copyright 2010 © Open IPTV Forum e.V.

CREATE_APP 2 A Control UI in the Remote Control Device sends a message
by using a URI defined by an OITF. This message has
triggered the application receiving this event to be launched
by the OITF.

7.17.1.2 Properties

readonly Integer currentRemoteDeviceHandle

The handle of the Remote Control Device which is associated with the DAE application in the mapping
information table (see Section 8.4.6) and is waiting for the response from the DAE application. The
value of this handle is assigned by the OITF, and is unique within the OITF for the duration of a session
(the duration of the connection between the OITF and that Remote Control Device). Applications
SHALL NOT rely on the value of this handle being preserved across sessions.

This property is retrieved from the mapping information table (see Section 8.4.6) in the OITF which
contains the pairing information between the Remote Control Device and the DAE application. Only
one Remote Control Device is allowed to connect to a given DAE application at a time.

If there is no mapping information between a Remote Control Device and the DAE application, this
property returns undefined.

readonly String currentRemoteDeviceUA

The Remote Control Device User-Agent string that has been provided in the Remote Control Device’s
HTTP request.

The application/oipfRemoteControlFunction object stores the value of the User-Agent header
included in the most recent HTTP request of the Remote Control Device currently being connected to
this DAE application.

Note: The User-Agent string of the Remote Control Device is expected to conform to the format of the
User-Agent string defined in [Req. 5.3.a] of [CEA-2014-A].

If there is no mapping information between a Remote Control Device and the DAE application, this
property returns undefined.

function onReceiveRemoteMessageonReceiveRemoteMessageonReceiveRemoteMessageonReceiveRemoteMessage (Integer type, Integer remoteDeviceHandle,
Integer reqHandle, String requestLine, String headers, String body)

The function that is called when the Remote Control Device sends an HTTP request with one of the
pre-defined URIs (“/rcf/request_cui” or “/rcf/request_msg”), or sends an HTTP request to the
OITF to launch a DAE application. The DAE application can distinguish between these two cases by
the type parameter as follows:

• When the Remote Control Device requests a control UI by using the pre-defined URI
“/rcf/request_cui”, the function is called with the type parameter REQUEST_CUI.

• When the Remote Control Device sends a message by using the pre-defined URI
“/rcf/request_msg”, the function is called with the type parameter REQUEST_MSG.

When the DAE application is launched by the OITF in response to a request from the control UI in the
Remote Control Device, the function is called with the type parameter CREATE_APP. The function will
be called after the DAE application has loaded (i.e. after the onLoad event has been dispatched to the

Page 254 (356)

 Copyright 2010 © Open IPTV Forum e.V.

DAE application). The DAE application being launched is expected to contain an instance of the
application/oipfRemoteControlFunction object.The OITF SHALL dispatch the event to the
application/oipfRemoteControlFunction object in the DAE application matched with the
Remote Control Device handle which are paired in the mapping information table (see Section 8.4.6).
When the ReceiveRemoteMessage event is dispatched to the target application, the DAE application
receives the Remote Control Device’s User-Agent header value containing the Remote Control
Device’s capability (in the headers parameter) which the OITF was given with the HTTP request from
the Remote Control Device. The DAE application SHALL include the User-Agent value from the
Remote Control Device in the XMLHTTPRequest object it uses to retrieve the appropriate Control UI
from the IPTV Applications server (see Section 8.1.2).

When this event is invoked, the DAE application SHALL respond by calling the
sendRemoteMessage() method. This method need not be called from the event handling function,
and may be called after a request to the IPTV Applications Server for an appropriate Control UI has
completed.

Only one Remote Control Device is allowed to connect to a DAE application (see Section 8.4.6) at any
time. If an HTTP request from another Remote Control Device directed at the DAE application is
received by the OITF while a Remote Control Device is connected, the OITF SHALL NOT make and
dispatch ReceiveRemoteMessage events to the target DAE application but SHALL send an HTTP
response (HTTP 500 - Internal Server Error) to the Remote Control Device.

Every HTTP request from a Remote Control Device to the DAE application with which it is paired
SHALL generate an onReceiveRemoteMessage event, even if there are previous HTTP requests
which the DAE application has not yet responded to. Each HTTP request SHALL be given a unique
reqHandle by the OITF to allow the DAE application to distinguish between outstanding requests.

The specified function is called with six arguments: type, remoteDeviceHandle, reqHandle,
requestLine, headers and body which are defined as follows:

• Integer type – the type of the HTTP request from the Remote Control Device. This SHALL
take one of the following values:

o REQUEST_CUI

o REQUEST_MSG

o CREATE_APP

• Integer remoteDeviceHandle – the handle of the Remote Control Device which is sending
the HTTP request to the DAE application. This handle has a unique value which is assigned by
the OITF.

• Integer reqHandle – the handle of the request from the Remote Control Device. The value of
this handle is assigned by the OITF, and is unique within the OITF for the duration of a session
(the duration of the connection between the OITF and that Remote Control Device). Applications
SHALL NOT rely on the value of this handle being preserved across sessions.

• String requestLine – the HTTP requestLine string that comes from the Remote Control
Device.

• String headers – the HTTP request header string that comes from the Remote Control Device.

• String body – the HTTP request body that comes from the Remote Control Device.

The values of the requestLine, headers and body parameters are derived from the received HTTP
request as follows:

Where: HTTP Request = Request-Line CRLF Header-Lines CRLF Message

Page 255 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Header-Lines = *((general-header | request-header | entity-header) CRLF)

Message = [message-body]

Then: requestLine = “Request-Line”.

 headers = ”Header-Lines”.

 body = “Message “.

function ononononResultMuticastNotifResultMuticastNotifResultMuticastNotifResultMuticastNotif (Integer remoteDeviceHandle, Integer reqHandle,
Boolean dynamic)

The function that is called when the Remote Control Device sends an HTTP request with an URL
which is a value of a <ruiEventURL> element in the Multicast Notification Message.

When this event is invoked with true value in the dynamic parameter, the DAE application SHALL
respond by calling the sendRemoteMessage method. This method need not be called from the event
handling function, and may be called after a request to the IPTV Applications Server for an appropriate
notification CE-HTML document has completed.

7.17.1.3 Methods

Boolean useServerSideXMLUuseServerSideXMLUuseServerSideXMLUuseServerSideXMLUIListingIListingIListingIListing(String xmlUIListing, Boolean
advertiseImmediately)

Description Generate an XML UI Listing by merging the XML UI Listing currently being exposed by
the DLNA RUIS in the OITF with the XML UI Listing provided by the xmlUIListing
parameter of this method.

If the OITF successfully generates the new XML UI Listing, this method SHALL return
true. Otherwise, it SHALL return false.

Arguments xmlUIListing The Server Side XML UI Listing.

 advertiseImmediately After generating the new XML UI Listing, if this
parameter is true, the DLNA RUIS in the OITF SHALL
send a UPnP Discovery (SSDP:byebye) message
followed by a UPnP Discovery (SSDP:alive) message.
This notifies the DLNA RUIC in any Remote Control
Device that it should retrieve the new XML UI Listing.

Boolean sendRemoteMessagesendRemoteMessagesendRemoteMessagesendRemoteMessage(Integer remoteDeviceHandle, Integer reqHandle,
String headers, String message)

Description Send the HTTP response with the headers and the message to the Remote Control
Device related to remoteDeviceHandle. This method is called by a DAE application
in response to a HTTP request from the Remote Control Device. This method can be
called at any time for any pending HTTP request (i.e. a request with handle
reqHandle from the Remote Control Device with handle remoteDeviceHandle that
has not had a response from the OITF via a sendRemoteMessage() or
sendInternalServerError() call).

Page 256 (356)

 Copyright 2010 © Open IPTV Forum e.V.

This method SHALL return true if the operation succeeded, or false if failed. If there
is no HTTP connection, it also returns false.

Arguments remoteDeviceHandle The handle of the Remote Control Device.

 reqHandle The handle of the request as provided by
onReceiveRemoteMessage.

 headers The HTTP response header string. This string is added
to the default HTTP header string generated by the
OITF to form the HTTP header string used for the
HTTP response. Any parameters that are specified in
both strings SHALL be set to the value in the headers
argument. If the headers supplied by the application do
not include a Content-Type header, the OITF SHALL
use the default content type of application/ce-
html+xml.

 message The HTTP response body string whose type is text
(e.g. XML, JSON, CE-HTML or Plain Text).

Boolean sendMulticastNotifsendMulticastNotifsendMulticastNotifsendMulticastNotif(Integer remoteDeviceHandle, Integer eventLevel,
String notifCEHTML, String friendlyName, String profilelist)

Description Send the 3rd party multicast notification to any Remote Control Devices (as defined in
Section 5.6.1 of [CEA-2014-A]) based on target Remote Device information.

The OITF SHALL store the text (essentially a CE-HTML document) provided in the
notifCEHTML parameter inside the DLNA RUIS and SHALL create a URL to it which
can be used by Remote Control Devices to retrieve the original text. This URL SHALL
be inserted in the <ruiEventURL> element in the Multicast Notification Message. If the
notifCEHTML parameter is set to null, the HTTP request from the Remote Device to
retrieve the text SHALL be being pended and dispatch the onResultMuticastNotif
event to the DAE application which will retrieve a CE-HTML document dynamically.
The DAE application SHALL use the sendRemoteMessage method with a CE-HTML
document related parameters to send the text (notification message).

If the remoteDeviceHandle parameter in this method has a value other than -1, the
notification CE-HTML document will be retrieved by the only Remote Device matched
with the remoteDeviceHandle parameter, whereas if the parameter has -1, all of the
Remote Devices could retrieve the notification CE-HTML document from the OITF
(see 8.4.5).

This method SHALL return true if the operation succeeded, or false if it failed.

Arguments remoteDeviceHandle The handle of the Remote Device.

 eventLevel The value of the HTTP LVL. This allows the Remote
Control Devices to filter the multicast notification
messages. The following are the defined event levels
and the expected meaning of those values (see Section
5.6.1 of [CEA-2014-A] for more information):

Status Semantics

0 The “upnp:/emergency” is included in the

Page 257 (356)

 Copyright 2010 © Open IPTV Forum e.V.

LVL header of the multicast notification.

The event carries critical information that
the Remote Control Device should act
upon immediately.

1 The “upnp:/fault” is included in the LVL
header of the multicast notification.

The event carries information related to
an error case.

2 The “upnp:/warning” is included in the
LVL header of the multicast notification.

The event carries information that is a
non-critical condition that the Remote
Control Device may want to process or
pass to the user.

3 The “upnp:/info” is included in the LVL
header of the multicast notification.

The event caries informational contents
that is not part of the main service
interaction but may be useful to some
Remote Control Devices in some
circumstances, such as debugging
information or other data.

4 The “upnp:/general” is included in the
LVL header of the multicast notification.

For events that fit into no other defined
category.

 notifCEHTML The text that makes up the notification CE-HTML
document, the link to which is sent to the Remote
Control Device.

 profileList All the profiles that the Remote UI Server in the OITF
requires the Remote UI Client in the Remote Control
Device to support to properly render the notification CE-
HTML document. The value of the <profilelist>
element SHALL conform to the definition of the
<profilelist> element in the XML schema in Annex
B of [CEA-2014-A].

Boolean sendInternalServerErrorsendInternalServerErrorsendInternalServerErrorsendInternalServerError(Integer remoteDeviceHandle, Integer reqHandle
)

Description Send the HTTP status code (500: Internal Server Error) in response to a pending
HTTP request from the Remote Control Device. This method SHALL return true if the
operation succeeded, or false if it failed.

Arguments remoteDeviceHandle The handle of the Remote Control Device.

Page 258 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 reqHandle The handle of the request as provided by
onReceiveRemoteMessage.

Boolean dropConnectiondropConnectiondropConnectiondropConnection(Integer remoteDeviceHandle)

Description Remove the mapping information in the table between the DAE application and the
Remote Control Device currently bound to the DAE application.

This method SHALL return true if the operation succeeded, or false if it failed.

Arguments remoteDeviceHandle The handle of the Remote Control Device.

7.17.1.4 Events

For the intrinsic events listed in the table below, a corresponding DOM level 2 event SHALL be generated in the
following manner:

Intrinsic event Corresponding DOM 2
event

DOM 2 Event properties

onReceiveRemoteMessage ReceiveRemoteMessage Bubbles: No

Cancelable: No

Context Info: type,
remoteDeviceHandle, reqHandle,
requestLine, headers, body

onResultMuticastNotif ResultMuticastNotif Bubbles: No

Cancelable: No

Context Info: remoteDeviceHandle,
reqHandle, dynamic

NOTE: the above DOM 2 events are directly dispatched to the event target, and will not bubble nor capture. Applications
SHOULD NOT rely on receiving ReceiveRemoteMessage or a ResultMuticastNotif event during the
bubbling or the capturing phase. Applications that use DOM 2 event handlers SHALL call the addEventListener()
method on the application/oipfRemoteControlFunction object. The third parameter of addEventListener, i.e.
“useCapture”, will be ignored.

Page 259 (356)

 Copyright 2010 © Open IPTV Forum e.V.

8 System integration aspects

8.1 HTTP Protocol
In addition to what is required by Section 5.3 of [CEA 2014A] an OITF SHALL apply the following requirements.

8.1.1 HTTP User-Agent header

All DAE application HTTP requests SHALL include a User-Agent header using the syntax described in this section.
Embedded objects HTTP requests MAY include a User-Agent header using this syntax.

The User-Agent header SHALL include:

OIPF-<oipfProfile>/<releaseVersion>.<majorVersion>.<minorVersion> (<capabilities>;
[<vendorName>]; [<modelName>]; [<softwareVersion>]; [<hardwareVersion>]; <reserved>)
[<appName>[/<appVersion>]]

Where:

• the <oipfProfile> field identifies the profile implemented by the OITF as defined in the specification of the
oipfProfile property of the LocalSystem class (see section 7.3.3).

• the <releaseVersion>, <majorVersion> and <minorVersion> fields identify the version of the specification
implemented by the OITF as defined in section 7.3.3 with properties of the same name.

• the <capabilities> field consists of a description of the OITFs capabilities. Valid values include a base profile
string concatenated with one or more optional Profile name fragment strings, such as the base UI profile strings and
UI profile name fragment strings as defined in Section 9.2.

• the <vendorName>, <modelName>, <softwareVersion> and <hardwareVersion> fields are the same as the one
defined in Section 7.11.1 and are optional.

• the <reserved> field is reserved for future extensions

• the <appName> and <appVersion> fields are defined in the window.navigator object and are optional.

This User-Agent header MAY be extended with other implementation-specific information.

Valid examples of such syntax are:

User-Agent: OIPF-OIP/2.2.0 (OITF_HD_UIPROF+PVR+DL; Sonic; TV44; 1.32.455; 2.002;)
Bee/3.5
User-Agent: OIPF-BMP/2.2.0 (OITF_HD_UIPROF+PVR+DL;;;;;)

8.1.2 HTTP X-OITF-RCF-User-Agent header

When the DAE application or embedded object (“application/oipfRemoteControlFunction”) makes a HTTP
request for the Control UI to the IPTV Applications server, the value of the X-OITF-RCF-User-Agent header
SHALL be filled with the value of the User-Agent header provided by the DAE application (and which came from the
DLNA RUIC on the Remote Control Device).

8.2 Mapping from APIs to Protocols
This section describes mapping of DAE APIs to the specific protocol entities as defined [OIPF_PROT2].

Section 8.2.1 describes mappings on the UNI that apply to both the managed and unmanaged cases.

Section 8.2.2 describes mappings on the HNI-IGI interface, and only apply in the managed case.

Section 8.2.3 describes mappings on the UNI that only apply to the unmanaged case.

Page 260 (356)

 Copyright 2010 © Open IPTV Forum e.V.

8.2.1 Network (Common to Managed and Unmanaged Serv ices)

This section provides details of mapping of the DAE APIs to the descriptions provided in [OIPF_PROT2] for APIs
between the OITF and the Network over reference points UNIT-17.

8.2.1.1 Download CoD

Methods Procedures

registerDownloadregisterDownloadregisterDownloadregisterDownload(String
contentAccessDownloadDescriptor,
Date downloadStart)

API described in Section 7.4.1.1 to download content
described in the contentAccessDownloadDescriptor. Data
structure of the contentAccessDownloadDescriptor as
described in Annex E.1.

If the OITF includes the Content Download functional
entity ,the information in the contentAccessDescriptor is
passed to the Content Download functional entity to
download content over UNIT-17 using HTTP as described
in Section 5.2.3.1 of [OIPF_PROT2].

8.2.1.2 Media Queuing

Methods Procedures

queuequeuequeuequeue(String url) API described in section 7.14.3 to queue an additional
media item for playback when the current media item
finishes playback.

Queued media items available via HTTP or stored on the
terminal MAY be pre-buffered by the OITF in order to
reduce transition delays. When pre-buffering media items,
the specified buffering policy SHALL NOT be affected.

For queued media items available via RTSP, session
setup MAY be carried out prior to the end of the currently
playing media item.

playplayplayplay(Number speed) API described in Section 5.7.1 of [CEA-2014-A] to play a
media item.

When the start of a media item is reached due to a
negative play speed, the playback SHOULD resume at
normal play speed without playing any previous media
items.

When the end of a media item is reached, playback of any
queued media items SHALL be initiated automatically at
the specified play speed. The OITF SHALL map this on to
the underlying protocol (HTTP or RTSP) as the following
sequence of DAE method calls:

data = <URI of the queued media item>;
play(<current play speed>);

Page 261 (356)

 Copyright 2010 © Open IPTV Forum e.V.

seekseekseekseek(Integer pos) API described in Section 5.7.1 of [CEA-2014-A] to seek to
the specified position in a media item.

If the value of pos is outside the current media item, the
play position SHALL NOT be changed.

nextnextnextnext() Not Supported.

previouspreviouspreviousprevious() Not Supported.

read/write String datadatadatadata API described in Section 5.7.1 of [CEA-2014-A] to play a
media item.

Modification of this property SHALL cause any queued
media items to be discarded.

8.2.2 OITF-IG Interface (Managed Services Only)

This section provides details of mapping of the DAE APIs to the descriptions provided in [OIPF_PROT2] for APIs
between the OITF and the Network over reference points HNI-IGI. Some methods and properties are closely associated
to HNI-IGI and are included in this section. These are the RTSP control, reference point UNIS-11, and IGMP control,
reference point UNIS-13,

8.2.2.1 Streaming CoD

The following tables describe the mapping of several methods of the CEA-2014 AV embedded object to the HNI-IGI
protocol interfaces defined in [OIPF_PROT2]

Method Procedures

playplayplayplay(Number speed) Selection of a content item results in session initiation and access to
content stream.

Parameters needed to build the offer SDP may be pre defined
locally in the OITF or the OITF SHALL request the IG to retrieve
missing SDP parameters as described in [OIPF_PROT2] Sec
5.2.2.1 ’Protocol over HNI-IGI’.

If the OITF does not have all transport parameters (RTP or UDP
transport for MPEG2TS encapsulation or direct RTP, FEC layers
addresses and ports), code information or bandwidth information to
populate the SDP the OITF SHALL prompt the IG to send
OPTIONS request in order to retrieve the missing parameters

The OITF SHALL provide the following information for the
OPTIONS request. Not all required headers are listed. Refer to
[OIPF_PROT2] for a complete list.

X-
OITF-
Reques
t-Line

Identify the HNI-IGI method with the content
identifier as described by the data property. e.g.

OPTION sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

Page 262 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Method Procedures

X-OITF-
From

Local defined OITF CurrentUser property. e.g.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

Copied from the data property. e.g.

sip: PSI-
Twister@IPTV_Service_Control.orange.com

The response to the OPTIONS message request contains the
information to populate the SDP offer.

The OITF prepares an SDP offer and requests the IG to initiate a
session, in addition to the SDP the following parameters are
forwarded from the OITF to the IG. Not all required headers are
listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the content
identifier as described by the data property. e.g.

INVITE sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. e.g.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

Copied from the data property. e.g.

sip: PSI-
Twister@IPTV_Service_Control.orange.com

After a successful session setup the OITF SHALL use the media
player to access the RTSP URI with the session ID negotiated and
received as part of the SDP offer, described in [OIPF_PROT2] sec
7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

The OITF SHALL send an RTSP PLAY over UNIS-11 using
attribute values received in the SDP from the session initiation
procedure. The RTSP PLAY is as described in the [OIPF_PROT2]
Sec 7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

The RTSP fields in the RTSP PLAY message SHALL be filled as
follows:

• The RTSP URL SHALL be
set from the SDP h-uri attribute in the case of an absolute
URI. The “data” property SHALL be updated with the SDP h-
uri attribute. If the value of h-uri is a relative URI that is in the
form of a media path, then the RTSP absolute URL is
constructed by the OITF using the SDP IPAddress (from c-
line) and port (from m-line) as the base followed by h-uri value
for the media path.
(e.g. rtsp://10.5.1.72:22554/TV3/823527)

• The RTSP Scale header SHALL be set to the value specified
in argument speed in method play. The argument SHOULD

Page 263 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Method Procedures

equal one of the values in the playsSpeeds property. The
Scale values [RTSP sec 12.34] are as follows:

� 1 indicates normal play.

� If not 1, the value corresponds to the rate with respect
to normal viewing rate.

� A negative value indicates reverse direction.

If the speed argument of method play does not equal a supported
play speed indicated by the playSpeeds property, the player SHALL
play the content at the closest available playback speed. The
play() method SHOULD only return false if the best effort to play
back the file at any speed has failed.

The actual playback speed SHALL be available through the “speed”
property of the A/V Control object.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

stopstopstopstop() The method enables the OITF to terminate and ongoing CoD
session. The OITF SHALL request the IG to terminate the session
as described in [OIPF_PROT2] Sec 5.2.2.1 ’Protocol over HNI-IGI’.

The OITF SHALL include the following information from the request.
Not all required headers are listed. Refer to [OIPF_PROT2] for a
complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the content
identifier as described by the data property. e.g.

BYE sip:PSI-
Twister@IPTV_Service_Control.orange.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To

Copied from the data property. eg.

sip: PSI-
Twister@IPTV_Service_Control.orange.com

The OITF SHALL remove all context information relevant to the
terminated COD session upon a successful response from the IG.

seekseekseekseek(Integer pos) If the seek() method is called while the player is in the “playing”
state, it sets current play position to “pos”, by using the “Range”
parameter in the RTSP PLAY as described in [OIPF_PROT2] sec
7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged

Page 264 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Method Procedures

event indicating a new playback position of “pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position that SHALL be used for the
“Range” parameter of the RTSP PLAY message when playback is
resumed.

playplayplayplay(0) This method causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROT2] sec 7.1.1.2 ‘RTSP for managed model
UNIS-11 and NPI-10’). The RTSP PAUSE message SHALL include:

• The RTSP URL SHALL be set to the value retrieved from the
fmtp:iptv_rtsp h-uri attribute of the SDP answer.

• Session header SHALL be set as specified in the SDP answer
fmtp:iptv_rtsp h-session attribute

After a successful response to the RTSP PAUSE message has
been received, the OITF SHALL generate a PlaySpeedChanged
event indicating a playback speed of 0.

nextnextnextnext() Not Supported. Note: Track information is not supported in
[OIPF_PROT2] and is therefore out of scope.

previouspreviouspreviousprevious() Not Supported. Note: Track information is not supported in
[OIPF_PROT2] and is therefore out of scope.

Property Procedures

read/write String datadatadatadata This property holds the URL that identifies the content, as defined in
[OIPF_PROT2] Sec 6.2.2.1.1 ‘Protocol over UNIS-8’ for details on
CoD URI.

It is used by the OITF compose the following headers for requests
towards the IG

 X-OITF-Request-Line

 X-OITF-To

If the “data” property of the A/V Control object refers to a Content-
Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml” as
defined in Section 7.14.2), the OITF must perform the following steps
prior to performing the procedures defined in [OIPF_PROT2] as
described for method play():

• An HTTP GET request SHALL be made with the Request-URI
set to the URL of the Content-Access Descriptor as denoted by
the “data” property of the A/V Control object.

• After the server has returned a Content Access Streaming
Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming+xml”),

Page 265 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Property Procedures

the OITF SHALL interpret the contents of the Content-Access
Descriptor and choose a URL defined by one of the
<ContentURL> elements. The criteria for choosing a URL can
be the DRM system supported by the OITF. The URL SHALL
then be used for setting up a Streaming CoD session, after
which playback can be started (when the play() method is
invoked). The “data” property of the A/V Control object SHALL
be changed to represent the chosen URL.

• Based on the information retrieved from the Content-Access
Streaming Descriptor, the OITF SHALL passing the
<DRMControlInformation> to the appropriate DRM agent, and
SHOULD initialize the AV playback, i.e. by loading the correct
codecs as identified by the Content-access Streaming
Descriptor.

readonly Number
playPositionplayPositionplayPositionplayPosition

The property holds the current play position in milliseconds of the
media referenced by the data property. The property value SHALL be
based on the value retrieved using the RTSP GET_PARAMETER
method and parameter “position” (refer to Section 7.1.1.2 of
[OIPF_PROT2]) adjusted for played duration and used scale.

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playSpeedsplaySpeedsplaySpeedsplaySpeeds[]

The property holds the available speeds (known in RTSP as scales)
at which the media can be played back. The property value SHALL
be based on the value retrieved using RTSP GET_PARAMETERS
method and parameter “scales” (refer to Section 7.1.1.2 of
[OIPF_PROT2]).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playTimeplayTimeplayTimeplayTime

The property holds the total duration in milliseconds of the media
referenced by the data property. The property value SHALL be based
on the value retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to Section 7.1.1.2 of [OIPF_PROT2]).

If information is not available the value SHALL be undefined. Note
this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number
playStateplayStateplayStateplayState

No procedures defined since it is not related to protocol specification.

readonly Number errorerrorerrorerror No procedures defined since it is not related to protocol specification.

readonly Number speedspeedspeedspeed Float value indicating the actual playback speed for the content
referenced by the data property. The normal default playback speed
is represented by value 1.

Page 266 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Intrinsic event Procedure

onPlaySpeedChanged When RTSP ANNOUNCE with either beginning-of-stream or end-of-
stream codes arrives the OITF SHALL generate
onPlaySpeedChanged event with a speed value of 0.

onPlayPositionChanged When the response to the RTSP PLAY with Range header request
(Range is included when performing seek() with a position) the
OITF SHALL generate onPlayPositionChanged event with the
accepted position.

8.2.2.2 Scheduled Content

8.2.2.2.1 Conveyance of channel list

Service discovery description procedure as described in [OIPF_PROT2] sec 6.3.1.1 ‘Service Provider discovery’ and
[OIPF_PROT2] Annex B 2.3 ‘IPTV Service discovery description’ enables the OITF to obtain the URL to access the
broadcast channel information. The OITF SHALL utilise UNIS-7 using this URL to obtain the Broadcast Discovery
Record.

8.2.2.2.2 Switching channels

Methods Procedures

setChannelsetChannelsetChannelsetChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL)

The setChannel() method of the <video/broadcast>
object SHALL be used to initiate a broadcast session or switch
channels. The procedures that are performed over the HNI-IGI
reference point depend on the current state of broadcast
session, either it is active or not. Note that an inactive
broadcast session means no service is being viewed.

If the channel has an idType of ID_IPTV_URI, the OITF
SHALL send and IGMP Leave and an IGMP Join request on
the UNIS-13 as described in [OIPF_PROT2] Sec 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13’.

If the channel has an idType of ID_IPTV_SDS, the following
steps are taken:

Session Initiation

The OITF SHALL generate a session initiation request over the
HNI-IGI including and SDP offer as described in
[OIPF_PROT2] sec 5.2.1 ‘Scheduled Content’. The bandwidth
is set according to the explanation under heading “Selection of
Bandwidth” further down.

If a “contentAccessDescriptorURL” has been specified for the
setChannel() method, the OITF must perform the following
steps prior to performing the procedures defined in
[OIPF_PROT2] for performing setChannel() as described
below:

• An HTTP GET request SHALL be made with the

Page 267 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Request-URI set to the URL of the Content-Access
Descriptor as denoted by the “contentAccessDescriptor”
attribute.

• Based on the information retrieved from the Content-
Access Descriptor, the OITF SHALL passing the
<DRMControlInformation> to the appropriate DRM agent.

The OITF SHALL provide the following information as part of
the scheduled session initiation request as described in
[OIPF_PROT2] Sec 6.2.1 ‘Scheduled Content’. Not all required
headers are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the well known
PSI (Public Service Identifier) of the scheduled
content. eg.

INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To PSI of the scheduled content. eg.

sip:IPTV_SC_Service@iptv.ericsson.com

The Offer SDP included in the OITF be SHALL have attributes
as described in [OIPF_PROT2] Annex E.2 ‘Service Package
SDP attributes.

On positive response to the INVITE request the OITF SHALL
send an IGMP Join request on the UNIS-13 as described in
[OIPF_PROT2] Sec 8.1.1.1 ‘Procedure for Scheduled Content
on UNIS-13’.

Session Modification

If the bandwidth conditions change as described under
heading “Selection of Bandwidth” further down then the OITF
SHALL generates a session modification request over the HNI-
IGI including the new SDP offer.

The OITF SHALL provide the following information as part of
the scheduled session modification request as described in
[OIPF_PROT2] Sec 6.2.1 ‘Scheduled Content’. Not all required
headers are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the well known
PSI (Public Service Identifier) of the scheduled
content. eg.

INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-
From

Local defined OITF CurrentUser property. eg.

Page 268 (356)

 Copyright 2010 © Open IPTV Forum e.V.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To PSI of the scheduled content. eg.

sip:IptvBroadcast@iptv.ericsson.com

The Offer SDP included by the OITF SHALL have attributes as
relevant to the new channel as described in [OIPF_PROT2]
Annex E.2 ‘Service Package SDP attributes’.

On receiving a successful response to the INVITE request the
OITF SHALL send and IGMP Leave and IGMP Join request on
the UNIS-13 as described in [OIPF_PROT2] Sec 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13’.

No Session Modification

If the bandwidth conditions as described under heading
“Selection of Bandwidth” further down have not changed then
the OITF SHALL send a membership report to leave the
previously viewed channel, if applicable, and with the same
membership report join to the multicast group associated with
the selected channel. The multicast group information is
retrieved from the Broadcast Discovery Record.

Selection of Bandwidth

The bandwidth to be used for the broadcast session depends
on the information provided in the Broadcast Discovery Record
(refer to [OIPF_META2]). The Broadcast Discovery Record
uses the term “service” to indicate a channel.

If the TimeToRenegotiate (TTR) element is not provided within
the IPService of the Broadcast Discovery Record then the
bandwidth SHALL be based on the maximum bandwidth for all
the services in the Broadcast Discovery Record. In this case
only one session initiation is performed at initial activation of
broadcast service, and no session modification is required.

If the TTR element is provided then the MaxBitRate from the
new service and current service are compared. If broadcast
service is not active and there is no active current service,
session initiation is performed with the new service
MaxBitRate. For already active broadcast service there are
three conditions.

• If the MaxBitrate of the new service is greater than that of
the current service and the reserved bandwidth is
exceeded, network bandwidth reservation using the
MaxBitrate of the new service SHALL occur immediately
with session modification to ensure sufficient bandwidth
is made available for the new service.

• If the MaxBitrate of the new service is equal to that of the
current service, network bandwidth reservation
procedures SHALL NOT be performed as sufficient
bandwidth is already available for the new service.

• If the MaxBitrate of the new service is less than that of

Page 269 (356)

 Copyright 2010 © Open IPTV Forum e.V.

the current service and there is no pending TTR timer, a
timer using the TTR element of the new service is started
which will renegotiate the bandwidth with session
modification.

Note that at every channel change if there is a pending timeout
for session modification due to a previous service change then
the timer is restarted. When the timer expires the bandwidth for
the currently viewed service is used in a session modification.

The session initiation, session modification and no session
modification are further described above.

8.2.2.2.3 End broadcast service

Methods Procedures

releasereleasereleaserelease() The release method of the video/broadcast object causes the OITF
to perform an IGMP Leave on the active broadcast session as
described in [OIPF_PROT2] sec 8.1.1.1 “Procedure for leaving a
Scheduled Content service”.

If the channel has an idType of ID_IPTV_SDS, the OITF SHALL
then execute a session termination procedure by sending a BYE
request over the HNI-IGI interface as described in section
[OIPF_PROT2] Sec 5.2.1.1 ‘Protocol over HNI-IGI’. The request
SHALL include the following information. Not all required headers
are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the well known PSI
(Public Service Identifier) of the scheduled content.
E.g.

INVITE
sip:IPTV_SC_Service@iptv.ericsson.com
SIP/2.0

X-OITF-
From Local defined OITF CurrentUser property. eg.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-
To PSI of the scheduled content. e.g.:

sip:IPTV_SC_Service@iptv.ericsson.com

8.2.2.2.4 Network timeshift of broadcast service

Methods Procedures

pausepausepausepause() The method has different behaviour if the pause() method has
previously been invoked. While the first pause() request sets up
the session over HNI-IGI the subsequent pause() requests simply
issue an RTSP PAUSE request.

First pause()pause()pause()pause() request

Page 270 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The OITF SHALL generates a session modification request over
the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the
unicast stream to be setup.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROT2] sec 6.2.1 ‘Scheduled Content’. Not all required
headers are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-
Line

Identify the HNI-IGI method with the well
known PSI (Public Service Identifier) of the
scheduled content, e.g.

INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-From Local defined OITF CurrentUser property,
e.g.

<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-To PSI of the scheduled content, e.g.
sip:IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Leave and request on the UNIS-13 as described in
[OIPF_PROT2] sec 8.1.1.1 ‘Procedure for Scheduled Content on
UNIS-13’.

Subsequent pause()pause()pause()pause() requests

This request causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROT2] sec 7.1.1.2 ‘RTSP for managed model
UNIS-11 and NPI-10’). The RTSP PAUSE message SHALL
include:

• The RTSP URL SHALL be set to the value retrieved from the
fmtp:iptv_rtsp h-uri attribute of the SDP answer.

• Session header SHALL be set as specified in the SDP
answer fmtp:iptv_rtsp h-session attribute

After a successful response to the RTSP PAUSE message has
been received, the OITF SHALL generate a PlaySpeedChanged
event indicating a playback speed of 0.

resumeresumeresumeresume() The OITF SHALL send an RTSP PLAY over UNIS-11 using
attribute values received in the SDP from the session modification
procedure. The RTSP PLAY is as described in [OIPF_PROT2] sec
7.1.1.2 ‘RTSP for managed model UNIS-11 and NPI 10’.

The RTSP fields in the RTSP PLAY message SHALL be filled as
follows:

• The RTSP URL SHALL be set from the SDP h-uri attribute in
the case of an absolute URI. The “data” property SHALL be

Page 271 (356)

 Copyright 2010 © Open IPTV Forum e.V.

updated with the SDP h-uri attribute. If the value of h-uri is a
relative URI that is in the form of a media path, then the
RTSP absolute URL is constructed by the OITF using the
SDP IPAddress (from c-line) and port (from m-line) as the
base followed by h-uri value for the media path. (e.g.
rtsp://10.5.1.72:22554/TV3/823527)

• The RTSP URL SHALL be set from the SDP h-uri attribute in
the case of an absolute URI. The “data” property SHALL be
updated with the SDP h-uri attribute. If the value of h-uri is a
relative URI that is in the form of a media path, then the
RTSP absolute URL is constructed by the OITF using the
SDP IPAddress (from c-line) and port (from m-line) as the
base followed by h-uri value for the media path.(e.g.
rtsp://10.5.1.72:22554/TV3/823527)

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

setSpeedsetSpeedsetSpeedsetSpeed(Number speed) Sets current speed by using the “Scale” header in the RTSP PLAY
as described in [OIPF_PROT2] sec 7.1.1.1 ‘RTSP for managed
model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a new playback speed.

seekseekseekseek(Integer offset,
Integer reference)

Sets current play position to “pos”, by using the “Range” parameter
in the RTSP PLAY as described in [OIPF_PROT2] sec 7.1.1.2
‘RTSP for managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged
event indicating a new playback position of “pos”.

stopTimeShiftstopTimeShiftstopTimeShiftstopTimeShift() The OITF SHALL generates a session modification request over
the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the
channel as described in [OIPF_PROT2] Annex E.2 ‘Service
Package SDP attributes’.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROT2] sec 6.2.1 ‘Scheduled Content’. Not all required
headers are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-Line Identify the HNI-IGI method with the well

known PSI (Public Service Identifier) of the
scheduled content, e.g.

INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-From Local defined OITF CurrentUser property,
e.g.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

Page 272 (356)

 Copyright 2010 © Open IPTV Forum e.V.

X-OITF-To PSI of the scheduled content, e.g.
sip:IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Join and request on the UNIS-13 as described in
[OIPF_PROT2] sec 8.1.1.1 ‘Procedure for Scheduled Content on
UNIS-13’.

setChannelsetChannelsetChannelsetChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL)

The following procedure is only applicable if Network Timeshift of
broadcast service is in progress.

The OITF SHALL generates a session modification request over
the HNI-IGI including the modified SDP offer. The SDP offer
included by the OITF SHALL have attributes as relevant to the new
channel as described in [OIPF_PROT2] Annex E.2 ‘Service
Package SDP attributes’.

The OITF SHALL provide the following information as part of the
scheduled session modification request as described in
[OIPF_PROT2] sec 6.2.1 ‘Scheduled Content’. Not all required
headers are listed. Refer to [OIPF_PROT2] for a complete list.

X-OITF-
Request-Line Identify the HNI-IGI method with the well

known PSI (Public Service Identifier) of the
scheduled content, e.g.

INVITE
sip:IptvBroadcast@iptv.ericsson.com
SIP/2.0

X-OITF-From Local defined OITF CurrentUser property,
e.g.
<sip:family@ims.live.ericsson.com>;
tag=1211455936632545012

X-OITF-To PSI of the scheduled content, e.g.
sip:IptvBroadcast@iptv.ericsson.com

On receiving a successful response to the INVITE request and if
the channel has an idType of ID_IPTV_URI, the OITF SHALL
send and IGMP Join and request on the UNIS-13 as described in
[OIPF_PROT2] sec 8.1.1.1 ‘Procedure for Scheduled Content on
UNIS-13’.

Property Procedures

read/write String datadatadatadata This property holds the RTSP URI from the SDP h-uri attribute.
Prior to a successful SIP INVITE the value is undefined.

Note that all the remaining properties listed under section 8.2.2.1, Streaming CoD, SHALL be supported as described.

8.2.2.3 IMS APIs

Page 273 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Methods Procedures

registerUserregisterUserregisterUserregisterUser(String userId,
String pin)

Performs IMS registration with the specified user ID as
described in [OIPF_PROT2] sec 5.3.6.1 ‘Procedure for User
Registration and Authentication in Managed Model on HNI-IG
Interface’.

deRegisterUserdeRegisterUserdeRegisterUserdeRegisterUser(String userId) Performs IMS de-registration with the specified user ID as
described in [OIPF_PROT2] sec 5.3.6.1 ‘Procedure for User
Registration and Authentication in Managed Model on HNI-IG
Interface’.

subscribesubscribesubscribesubscribeIMSIMSIMSIMSNotificationNotificationNotificationNotification
(FeatureTagCollection
featureTagCollection, Boolean
performuserregistration)

OITF maintains applications that have subscribed to
notifications. If applicable it will send a re-registration to the IG.
When new messages arrive at the IG it shall notify the OITF. (as
defined in [OIPF_PROT2] sec 5.5.1.2).

ununununssssubscribeubscribeubscribeubscribeIMSIMSIMSIMSNotificationNotificationNotificationNotification() This is a local call within OITF to notify that the DAE application
SHALL NOT receive unsolicited notification. The OITF shall use
native code to handle new dialogues. Any feature tag values that
were added by the DAE application are removed for the
indicated userId since no native code is setup to process the
new dialogues for the feature tag values.

8.2.3 Network (Unmanaged Services only)

This section provides details of mapping of the DAE APIs to the descriptions provided in [OIPF_PROT2] for APIs
between the OITF and the Network. These are the RTSP control, reference point UNIS-11, reference point UNIS-13.

8.2.3.1 Streaming CoD

Page 274 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Method Procedures

playplayplayplay(Number speed) The "speed" parameter is a floating point value indicating the
requested playback speed. A value of 1 represents normal playback
speed, and other values are relative to this.

A “speed” value of zero SHALL NOT initiate any procedures.

RTSP

The RTSP URL signalled by the “data” attribute SHALL be used to
initiate the process defined in [OIPF_PROT2] Sec 7.1.1.1.1. The
“data” attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The RTSP PLAY request SHALL
include a "Scale" header set to the value of the "speed" parameter
passed to the API. The server will play the stream at the specified
speed, if supported.

If property oitfNoRTSPSessionControl is set to true then the
RTSP messages DESCRIBE and SETUP are not used. If the play()
method is called with a non-zero speed the property
oipfRTSPSessionId is copied to the RTSP SessionId header for
the RTSP PLAY request. If the oipfRTSPSessionId is undefined
the play() method SHALL fail.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

HTTP

The HTTP URL signalling by the “data” attribute SHALL be used to
initiate the process defined in [OIPF_PROT2] Sec 5.2.2.2. The “data”
attribute SHALL furthermore be updated with the new URI after
redirection requests (moved). The “speed” parameter SHALL be
passed to the OITF media player, which SHOULD attempt to play
back the content at the requested speed.

If the media player successfully begins to play back the content, the
OITF SHALL generate a PlaySpeedChanged event indicating the
actual playback speed.

stopstopstopstop() RTSP

The OITF SHALL initiate the process defined in [OIPF_PROT2] Sec
7.1.1.1.2 except if the property oitfNoRTSPSessionControl is set
to true.

HTTP

The OITF SHALL stop playback. The OITF MAY close the connection
to the server and MAY clear any buffered content.

Page 275 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Method Procedures

seekseekseekseek(Integer pos) RTSP

If the seek() method is called while the player is in the “playing
state”, it sets current play position to “pos”, by using the “Range”
parameter in the RTSP PLAY as described in [OIPF_PROT2] sec
7.1.1.1 ‘RTSP for managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged event
indicating a new playback position of “pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position that SHALL be used for the
“Range” parameter of the RTSP PLAY message when playback is
resumed.

HTTP

If the seek() method is called while the player is in the “playing
state”, the OITF SHALL attempt to playback from the specified
position “pos”. It MAY use the RANGE header as described in
[OIPF_PROT2] Sec 5.2.2.2 as necessary.

If the media player successfully begins to play back the content from
the specified position, the OITF SHALL generate a
PlayPositionChanged event indicating a new playback position of
“pos”.

If the seek() method is called while the player is in the “paused”
state, the value of playPosition is changed to reflect the new play
position. This is the new play position from which playback SHALL be
resumed.

playplayplayplay(0) RTSP

This method causes the OITF to send an RTSP PAUSE message
(refer to [OIPF_PROT2] sec 7.1.1.2 ‘RTSP for managed model UNIS-
11 and NPI-10’). The RTSP PAUSE message SHALL include:

After a successful response to the RTSP PAUSE message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a play speed of 0.

HTTP

The OITF SHALL pause playback.

If the media player successfully pauses playback, the OITF SHALL
generate a play speed event indicating a PlaySpeedChanged of 0.

nextnextnextnext() Not Supported. Note: Track information is not supported in
[OIPF_PROT2] and is therefore out of scope.

previouspreviouspreviousprevious() Not Supported. Note: Track information is not supported in
[OIPF_PROT2] and is therefore out of scope.

Page 276 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Property Procedures

read/write String datadatadatadata RTSP

This property holds the RTSP URI for the content item.

HTTP

The property holds the HTTP URI for the content item.

If the “data” property of the A/V Control object refers to a
Content-Access Streaming Descriptor (i.e. the object has type
“application/vnd.oipf.ContentAccessStreaming+xml”
as defined in Section 7.14.2), the OITF must perform the
following steps prior to performing the procedures defined in
[OIPF_PROT2] as described for method play():

• An HTTP GET request SHALL be made with the Request-
URI set to the URL of the Content-Access Streaming
Descriptor as denoted by the “data” property of the A/V
Control object.

• After the server has returned a Content Access Streaming
Descriptor (i.e. a document with type
“application/vnd.oipf.ContentAccessStreaming+x
ml”), the OITF SHALL interpret the contents of the
Content-Access Streaming Descriptor and choose a URL
defined by one of the <ContentURL> elements. The criteria
for choosing a URL can be the DRM system supported by
the OITF. The URL SHALL then be used for setting up a
Streaming CoD session, after which playback can be
started (when the play() method is invoked). The “data”
property of the A/V Control object SHALL be changed to
represent the chosen URL.

• Based on the information retrieved from the Content-
Access Streaming Descriptor, the OITF SHALL passing the
<DRMControlInformation> to the appropriate DRM agent,
and SHOULD initialize the AV playback, i.e. by loading the
correct codecs as identified by the Content-access
Streaming Descriptor.

readonly Number
playPositionplayPositionplayPositionplayPosition

The property holds the current play position in milliseconds of
the media referenced by the data property.

For RTP, The property value SHALL be based on the value
retrieved using the RTSP GET PARAMETERS method and
parameter “position” (refer to [OIPF_PROT2] Sec 7.1.1.2
‘RTSP for managed model UNIS-11 and NPI-10’) adjusted for
played duration and used scale.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

Page 277 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Number
playSpeedsplaySpeedsplaySpeedsplaySpeeds[]

For RTSP, the property holds the available speeds, or referred in
RTSP as Scale, to be used to change the playback speed. The
property value SHALL be based on the value retrieved using
RTSP GET PARAMETERS method and parameter “scales”
(refer to [OIPF_PROT2] Sec 7.1.1.2 ‘RTSP for managed model
UNIS-11 and NPI-10’).

For HTTP, the possible playback speeds are determined by the
OITF internal capabilities and buffering model, and the speed at
which content is delivered. The OITF MAY make this information
available via this property.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number playTplayTplayTplayTimeimeimeime The property holds the total duration in milliseconds of the media
referenced by the data property.

For RTSP, the property value SHALL be based on the value
retrieved using RTSP GET_PARAMETER method and
parameter “duration” (refer to [OIPF_PROT2] Sec 7.1.1.2
‘RTSP for managed model UNIS-11 and NPI10’).

For HTTP, the property value MAY be determined using the
“Content-Length” HTTP header, although it is noted that this
method does not work for variable bit rate content.

If information is not available the value SHALL be undefined.
Note this may happen at the beginning of playing a video and
GET_PARAMETER has not returned a value.

readonly Number playStateplayStateplayStateplayState No procedures defined since it is not related to protocol
specification.

readonly Number errorerrorerrorerror No procedures defined since it is not related to protocol
specification.

readonly Number speedspeedspeedspeed Float value indicating the actual playback speed of the player for
the content referenced by the data property. The normal default
playback speed is represented by value 1.

Intrinsic event Procedure

onPlaySpeedChanged When RTSP ANNOUNCE with either beginning-of-stream or
end-of-stream codes arrives the OITF SHALL generate
onPlaySpeedChanged event with a speed value of 0.

onPlayPositionChanged When the response to the RTSP PLAY with Range header
request (Range is included when performing seek() with a
position) the OITF SHALL generate onPlayPositionChanged
event with the accepted position.

Page 278 (356)

 Copyright 2010 © Open IPTV Forum e.V.

8.2.3.2 Scheduled content

8.2.3.2.1 Switching channels

Methods Procedures

setChannelsetChannelsetChannelsetChannel(Channel
channel, Boolean
trickplay, String
contentAccessDescriptorURL
)

The setChannel method of the <video/broadcast> object
SHALL be used to initiate a broadcast session or switch
channels. If the channel has an idType of ID_IPTV_URI, the
OITF SHALL send and IGMP Leave and an IGMP Join request
on the UNIS-13 as described in [OIPF_PROT2] Sec 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13 with Session
Initiation’.

8.2.3.2.2 End broadcast service

Methods Procedures

releasereleasereleaserelease() The release method of the video/broadcast object causes the
OITF to perform an IGMP Leave on the active broadcast
session as described in [OIPF_PROT2] Sec. 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13 with Session
Initiation’.

8.2.3.2.3 Network timeshift of broadcast services

Methods Procedures

pausepausepausepause() The pause method of the video/broadcast object causes the
OITF to perform an IGMP Leave on the active broadcast session as
described in [OIPF_PROT2] sec. 8.1.1.1 “Procedure for leaving a
Scheduled Content service”.

resumeresumeresumeresume() The RTSP URL signalled by the “data” attribute SHALL be used to
initiate the process defined in [OIPF_PROT2] sec 7.1.1.1.1. The
“data” attribute SHALL furthermore be updated with the new URI
after redirection requests (moved).

The value of the “scale” header in the RTSP PLAY message
SHALL be the value set by the most recent call to setSpeed(), or
1.0 if the most recent call to setSpeed() set the playback speed to
0 or setSpeed() has not been called.

If property oitfNoRTSPSessionControl is set to true then the
RTSP messages DESCRIBE and SETUP are not used. If the
play() method is called with a non-zero speed the property
oipfRTSPSessionId is copied to the RTSP SessionId header for
the RTSP PLAY request. If the oipfRTSPSessionId is undefined
the play() method SHALL fail.

Page 279 (356)

 Copyright 2010 © Open IPTV Forum e.V.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating the actual playback speed.

setSpeedsetSpeedsetSpeedsetSpeed(Number speed) Sets current speed by using the “Scale” header in the RTSP PLAY
as described in [OIPF_PROT2] sec 7.1.1.1 ‘RTSP for managed
model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlaySpeedChanged event
indicating a new playback speed.

If playback is previously paused (either by a call to pause() or by
setting the playback speed to 0) then the new speed SHALL NOT
be applied until the resume() method is called, as described
above.

seekseekseekseek(Integer offset,
Integer reference)

Sets current play position to “pos”, by using the “Range” parameter
in the RTSP PLAY as described in [OIPF_PROT2] sec 7.1.1.1
‘RTSP for managed model UNIS-11 and NPI 10’.

After a successful response to the RTSP PLAY message has been
received, the OITF SHALL generate a PlayPositionChanged
event indicating a new playback position of “pos”.

stopTimeShiftstopTimeShiftstopTimeShiftstopTimeShift() The setChannel() method of the video/broadcast object SHALL
be used to initiate a broadcast session. If the channel has an
idType of ID_IPTV_URI, the OITF SHALL send and IGMP Join
request on the UNIS-13 as described in [OIPF_PROT2] sec 8.1.1.1
‘Procedure for Scheduled Content on UNIS-13’.

Property Procedures

read/write String datadatadatadata This property holds the RTSP URI for the content item.

Note that all the remaining properties listed under section 8.2.3.1, Streaming CoD, SHALL be supported as described.

8.3 URI Schemes and their usage
The following table lists possible URL schemas and their usages within DAE documents (XHTML, ECMAScript,
images, and references to A/V content). If a certain URL scheme is supported, the corresponding protocols to an URL
scheme SHALL be supported as defined by the reference(s)

Page 280 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Table 13: URI schemes and usages

URI
scheme

Usage Reference Comments

dvb-mcast Scheduled content delivery DVB-MCAST URI
scheme as defined by
Annex A1 of [TS 102
539]

A URL to refer to a
scheduled content
channel supported by
the OITF and
delivered via
multicast.

dvb Application launching Locator for applications
signalled in SD&S as
defined by Section 6.3.3
of [TS 102 851]

The orgid and appid
encoded in the DVB
URI are compared
with the applications
signalled in SD&S to
identify one with the
same orgid and
appid.

igmp Scheduled content Annex F of
[OIPF_PROT2]

The transport IP
Multicast Address to
access the service as
defined in [DVB-
IPTV].

http and
https

Transport of DAE documents Section 5.3.3.1 of
[OIPF_PROT2]

Section 5.3 of [CEA-
2014-A]

Section 5 of
[OIPF_CSP2]

A URL to refer
documents supported
by DAE.

COD streaming
Annex F of
[OIPF_PROT2]

A Content URL
specified in the data
attribute of A/V
Control object as
defined in the section
5.7.1 of [CEA-2014-
A].

A Content URL
specified in a Content
Access Descriptor
described in Annex E.

crid COD streaming Section 4.2.3 of
[OIPF_META2]

sip Programme identification via
BCG

Annex F of
[OIPF_PROT2]

COD streaming

rtsp COD streaming

8.4 DLNA RUI Remote Control Function implementation
This section aims to give guidelines to the DAE application developer suggesting how the DAE application should be
implemented to use a DLNA Remote UI Function, covering the following areas:

Page 281 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Relationship between DAE application and control UI

• XML UI Listing Provisioning

• Retrieving the Control UI

• Receiving a message (control command) from the Remote Control Device and Responding to a message from the
Remote Control Device

• Notification to the Remote Control Device

• Multiple application handling

The sections below provide more details including example code in each case.

8.4.1 Relationship between DAE application and cont rol UI

It is assumed that the service provider authors both the DAE application and the control UI to run on the Remote Control
Device that communicates with the DAE application. It means that the DAE application and the control UI are managed
by one service provider, and the DAE application could handle the HTTP request message which comes from the control
UI currently being rendered in the DLNA RUIC.

8.4.2 XML UI Listing Provisioning

There are two kinds of XML UI Listing (details are described in Section 5.1.1.5 of [CEA-2014-A]):

• The OITF’s built in XML UI Listing, that originates from the OITF (DLNA RUIS) and which is usually pre-defined
by the device vendor,

• The Server Side XML UI Listing, that is provided by the DAE application and which is defined by the service
provider.

Below is a description of where each type of XML UI Listing come from.

• OITF’s built in XML UI Listing (blue arrow in above diagram):

o This XML UI Listing contains a set of URI pre-defined by the OITF corresponding to a number of Control UIs
that are available in the OITF device itself.

o The OITF SHALL use this XML UI Listing until a DAE application calls the
useServerSideXMLUIListing() method.

• Server Side XML UI Listing (red arrows in above diagram):

o This XML UI Listing contains both the URIs which identify the control UIs located on the appropriate IPTV
Applications server through the pre-defined URI “/rcf/request_cui”.

� Examples: /rcf/request_cui?url=www.cui-server.com/avcontrol.html¶m1=value1…

The XML UI Listing is retrieved (or created dynamically) by a DAE application, which then merges the new
XML UI Listing with a current XML UI Listing in the DLNA RUIS using the
useServerSideXMLUIListing() method. The merged XML UI Listing will be located in the DLNA
RUIS.

DLNA RUIS IPTV Applications server

Remote Control
Device

OITF’s built in
XML UI Listing

Server Side XML
UI Listing

Page 282 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The OITF SHALL associate all entries in the XML UI Listing added by a DAE application with that application,
such that any HTTP requests from a Remote Control Device for the control UI specified by the XML UI Listing
entry SHALL be passed to the corresponding application.

All URIs provided in the XML UI Listing SHALL start with the pre-defined URI “/rcf/request_cui”,
which can then be followed by some application-specific parameters. These parameters can be used by the DAE
application to identify the Control UI being requested by the Remote Control Device.

The format of the parameters in the URI is out of scope of the DAE specification.

o When the DAE application is terminated, the OITF SHALL remove any XML UI Listings previously added by
the application.

The following example shows the format of the Server Side XML UI Listing. The <uri> element in the Server Side
XML UI Listing SHALL start with the value “/rcf/request_cui”.

<?xml version="1.0" encoding="UTF-8"?>
<uilist xmlns="urn:schemas-upnp-org:remoteui:uilist-1-0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:schemas-
upnp-org:remoteui:uilist-1-0 CompatibleUIs.xsd">
 <ui>
 <uiID>4560-9876-1265-8758</uiID>
 <name>CoD Control UI Type 1</name>
 <description>Controlling the CoD contents</description>
 <protocol shortName="CE-HTML-1.0">
 <uri>/rcf/request_cui?url=http://21.31.24.55:5910/codcui1</uri>
 <protocolInfo>
 <relatedData xmlns="urn:schemas-ce-org:ce-html-server-caps-1-0"
 xsi:schemaLocation="urn:schemas-ce-org:ce-html-server-caps-1-0
ServerProfiles.xsd">
 <profilelist>
 <ui_profile name="MD_UIPROF"/>
 </profilelist>
 </relatedData>
 </protocolInfo>
 </protocol>
 </ui>
 <ui>
 <uiID>2123-3679-3568-2121</uiID>
 <name>CoD Control UI Type 2</name>
 <protocol shortName="CE-HTML-1.0">
 <uri>/rcf/request_cui?url=http://21.31.24.55:5910/codcui2</uri>
 <protocolInfo>
 <relatedData xmlns="urn:schemas-ce-org:ce-html-server-caps-1-0">
 <profilelist>
 <ui_profile name="MD_UIPROF"/>
 </profilelist>
 </relatedData>
 </protocolInfo>
 </protocol>
 </ui>
</uilist>

Below is example source code showing how an application can merge a Server Side XML UI Listing that it has retrieved
with the OITF’s built-in XML UI Listing.

var rcMgr;
var xmlhttp;

function init() {
 ...
 rcMgr = document.getElementById("rcfmanager");
 retrieveXMLUIListingFromServer("/iptv_app/xml_location/request_xml?xml=31",
mergeXMLUIListing);
 ...
}

function retrieveXMLUIListingFromServer(url, callbackFunc) {
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 if(xmlhttp.status == 200){
 callbackFunc(xmlhttp.responseText);
 }
 }
 }
 xmlhttp.open("GET", url, true);

Page 283 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 xmlhttp.send(null);
}

function mergeXMLUIListing(xmluilisting) {
 rcMgr.useServerSideXMLUIListing(xmluilisting, false);
}
<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>
...

8.4.3 Retrieving the Control UI

The process of retrieving a Control UI based on an OITF’s built in XML UI Listing is described below:

1) The Remote Control Device sends the request to the DLNA RUIS for the XML UI Listing.

2) The Remote Control Device presents a UI based on the information in the XML UI Listing. The user selects an entry
from the list.

3) The Remote Control Device sends the HTTP request containing the URI (which has been specified by the OITF
itself) to the DLNA RUIS. The OITF returns the Control UI (from its internal memory).

4) The Remote Control Device presents the Control UI. This Control UI may be an application itself or may be a list of
other available applications. In the latter case, the user selects a link from the Control UI.

5) The Remote Control Device sends the HTTP request containing the URI from the selected link to the DLNA RUIS.
The OITF retrieves the DAE application from the IPTV Applications server and executes it.

6) The DAE application recognises that it needs to get the control UI.

7) The DAE application retrieves the Control UI from the IPTV Applications server.

8) The DAE application passes the Control UI received from the IPTV Applications server to the Remote Control
Device.

The process of retrieving a Control UI based on a Server Side XML UI Listing is as below:

1) The Remote Control Device sends the request to the DLNA RUIS for the XML UI Listing.

2) The Remote Control Device presents a UI based on the information in the XML UI Listing. The user selects an entry
from the list.

3) The Remote Control Device sends the HTTP request containing the URI (which must start with
“/rcf/request_cui”) to the OITF DLNA RUIS. The OITF matches the URI with the correct DAE application
and passes the request to that DAE application as a ReceiveRemoteMessage event.

4) The DAE application translates the request which came from the Remote Control Device into a URI.

5) The DAE application retrieves the Control UI from the IPTV Applications server using this URI.

6) The DAE application passes the Control UI received from the IPTV Applications server to the Remote Control
Device using sendRemoteMessage().

More details can be found in Annex J.

When the control UI (CE-HTML document) is being rendered in the Remote Control Device, it can retrieve resources
(For example, image, css or javascript files) directly from the IPTV Applications server over a secure connection. For
deployments where the IPTV Applications server is outside the consumer network, the consumer network’s WAN
gateway SHALL allow the DLNA RUIC to access the IPTV Applications server to retrieve resources directly. The
Remote Control Device that connects to the IPTV Applications server SHALL implement the Secure Sockets Layer

Page 284 (356)

 Copyright 2010 © Open IPTV Forum e.V.

(SSL) Protocol, the Transport Layer Security (TLS) and the “https:” URI scheme, in order to support secure Internet
transactions (as defined in [Req. 5.1.2.b] of [CEA-2014-A]).

Below is example source code to show sending the control UI to the Remote Control Device.

var rcMgr;
var xmlhttp;
var deviceHandle;
var reqHandles = new Array();

function init() {
 ...
 rcMgr = document.getElementById("rcfmanager");
 rcMgr.addEventListener("ReceiveRemoteMessage", receiveRemoteMessageFromRD, false);

 // check whether the DAE app is launched by the Remote Control Device or not
 if (rcMgr.currentRemoteDeviceHandle != undefined) {
 deviceHandle = rcMgr.currentRemoteDeviceHandle;
 retrieveCUIFromServer("/iptv_applications/cui_location/request_cui?cui=123",
sendCUIToRemoteDevice);
 }
 ...
}

function retrieveCUIFromServer(url, callbackFunc){
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 if(xmlhttp.status == 200){
 callbackFunc(xmlhttp.responseText);
 }
 }
 }
 xmlhttp.open("GET", url, true);
 xmlhttp.setRequestHeader("X-OITF-RCF-User-Agent",
rcMgr.getRemoteDeviceUserAgent(deviceHandle));
 xmlhttp.send(null);
}

function sendCUIToRemoteDevice(cuiCEHTML) {
 rcMgr.sendRemoteMessage(remoteDeviceHandle, reqHandles.shift(), cuiCEHTML);
}

function receiveRemoteMessageFromRD(type, remoteDeviceHandle, reqHandle, requestLine,
headers, body) {
 if (type == 0) {
 deviceHandle = remoteDeviceHandle;
 reqHandles.push(reqHandle);

 // retrieve the CUI CE-HTML document from the IPTV Applications server
 retrieveCUIFromServer("/iptv_applications/cui_location/request_cui?cui=123",
sendCUIToRemoteDevice);
 }
}
<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>
...

8.4.4 Receiving and responding a message between th e control UI in
the Remote Control Device and OITF

This example shows the usage of receiving and responding to a message between the control UI presented on the Remote
Control Device and the OITF. When the control UI sends a message to the DAE application via an HTTP request, the
DAE application receives the message via a ReceiveRemoteMessage event. The DAE application SHALL return the

DAE

Remote Control
Device

Control UI

Page 285 (356)

 Copyright 2010 © Open IPTV Forum e.V.

response to the control UI in the Remote Control Device by using the sendRemoteMessage() or
sendInternalServerError() methods.

The OITF is not able to notify the Remote Control Device whether the DAE application has been terminated or
deactivated, or whether the application/oipfRemoteControlFunction object has been removed from the
application’s DOM tree. For this reason, the Remote Control Device may be presenting an outdated copy of the control
UI and could send a request from this outdated control UI. In this case, the OITF SHALL return a 500 response error
code to the Remote Control Device.

The OITF SHALL limit the number of HTTP requests (from the control UI in the Remote Control Device) which have
not been responded to by the DAE application. If there are any requests over this limit, the OITF SHALL automatically
reject them and send an HTTP response (HTTP 500 - Internal Server Error) to the Remote Control Device. The OITF
SHALL buffer at least 10 outstanding HTTP requests.

Note: Annex J.3 provides a procedure related to this example.

Below is example source code showing the handling of messages between the DAE application and the control UI that
controls the DAE application.

DAE application

var rcMgr;
var reqHandles = new Array();

function init() {
 ...
 rcMgr = document.getElementById("rcfmanager");
 rcMgr.addEventListener("ReceiveRemoteMessage", getMessageFromRD, false);
 ...
}

function getMessageFromRD(type, remoteDeviceHandle, reqHandle, requestLine, headers,
body) {
 if (type == 1) {
 // Handling the received message with parameters (requestLine, headers, body)
 parseAndExecute(body);

 // Sending the proper return message to the Remote Control Device
 Var contentType = “Content-Type: text/plain\n”
 rcMgr.sendRemoteMessage(remoteDeviceHandle, reqHandle, contentType, "ok");
 }
}

function parseAndExecute(body) {
 //For example, the request from the RD contains the message related to "play of
audio" with JSON form (Ex: {'command':415})
 var retVal = eval("("+body+")");
 if (retVal.command == VK_PLAY) {
 document.getElementById("aid1").play(1);
 }
}

<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>
<object type="audio/mp4" id="aid1" data="http://www.avsource.com/audio/bgm.aac">
<param name="loop" value="infinite"/>
</object>
...

Control UI

var xmlhttp;

function sendPlay() {
 var msg = {'command':415};
 sendMessage("/rcf/request_msg", msg, receiveMsg);
}

function sendMessage(url, msg, callbackFunc){
 xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {

Page 286 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 if(xmlhttp.status == 200){
 callbackFunc(xmlhttp.responseText);
 }
 }
 }
 xmlhttp.open("POST", url, true);
 request.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
 xmlhttp.send(msg);
}

function receiveMsg(msg) {
 alert("Received message from the DAE application: " + msg);
}
<body>
...
<input type="button" value="Play" onclick="javascript:sendPlay();">
...

8.4.5 Notification to the Remote Control Device

The application/oipfRemoteControlFunction object supports generating 3rd party multicast notifications and
dispatching them to Remote Control Devices. The DAE application can make and send a notification to the Remote
Control Devices by using the sendMulticastNotif() method.

If the DAE application wants to send a notification CE-HTML document to all of the Remote Devices, the DAE
application SHALL set the remoteDeviceHandle parameter in the sendMulticastNotif method to -1.

Otherwise, if the DAE application wants to allow only targeted Remote Device (currently being connected to the DAE
application) to retrieve the notification CE-HTML document, the DAE application set the proper
remoteDeviceHandle parameter in the sendMulticastNotif method when it calls. Then, the OITF SHALL
generate the notification URI with devicehandle and daeid parameters.

If the DAE application wants to send a notification CE-HTML document without storing it in the OITF, the DAE
application executes the sendMulticastNotif method with null value in the notifCEHTML parameter. The OITF
SHALL make the notification URI which contains a dynamic parameter with true value, otherwise false is set in the
dynamic parameter.

Below is a generated notification URI based on parameter information in the sendMulticastNotif method.

- ?SendToTargetedRD&devicehandle=<target device handle value>&daeid=<DAE App ID>&dynamic=<true or
false>

This URL is sent to the Remote Devices through the <ruiEventURL> element of the multicast notification event and
the Remote Devices send requests to the OITF with this URL upon receiving it. When the OITF receives the requests
from the Remote Devices, it SHALL return the notification CE-HTML document in case the handle of the Remote
Device which sends the request is the same with the parameter value “<target device handle value>” in the HTTP request
URL, otherwise the OITF SHALL return the HTTP 403 response.

Below is example source code to show that the only targeted Remote Device retrieves the notification CE-HTML
document.

var rcMgr;
var xmlhttp;
var deviceHandle;
var reqHandles = new Array();

function init() {
 ...
 rcMgr = document.getElementById("rcfmanager");
 rcMgr.addEventListener("ResultMuticastNotif", resultMuticastNotifFromRD, false);
 ...
}

function sendTargetedNotif() {
 // A remoteDeviceHandle SHALL be set to -1 if the OITF wants to send the
notification CE-HTML UI to all of the Remote Devices
 // A remoteDeviceHandle SHALL be set to a specific value of the device handle if the
OITF wants to send the notification CE-HTML UI to the targeted Remote Control Devices

Page 287 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 var remoteDeviceHandle = rcMgr.currentRemoteDeviceHandle;
 var eventLevel = 0;
 var notifCEHTML = "<html>…</html>";
 var friendlyName = "Important notification";
 var profilelist = "<ui_profile name='MD_UIPROF'/>";

 rcMgr.sendMulticastNotif (remoteDeviceHandle , eventLevel, notifCEHTML, friendlyName,
profilelist);
}

function resultMuticastNotifFromRD(remoteDeviceHandle, reqHandle, dynamic) {
 if (dynamic != true) {
 alert("Notification is sent to the Remote Control Device well");
 } else {
 //Retrieve a notifcation CE-HTML UI from server
 ...
 }
}

<body onload="init();">
<object id="rcfmanager" type="application/oipfRemoteControlFunction"/>
...

8.4.6 Handling Multiple DAE applications and Multip le Remote Control
Devices

The OITF SHALL dispatch requests from a Remote Control Device to the DAE application that it is currently
controlling. Only one Remote Control Device SHALL communicate with a DAE application at any time although this
could change over time as described below.

• Multiple Remote Devices SHALL not be mapped to a same DAE application at the same time. If a second Remote
Control Device attempts to send an HTTP request to a DAE application which is already mapped to a different
Remote Control Device, this request SHALL fail (the OITF sends an HTTP 500 response to the Remote Control
Device).

• One Remote Device SHALL not be mapped to multiple DAE applications at the same time. If a Remote Device is
currently connected to a DAE application and then attempts to make a request to another DAE application, this
request SHALL fail (the OITF sends an HTTP 500 response to the Remote Device).

The OITF SHALL support three mechanisms to drop the connection between a Remote Control Device and a DAE
application as follows:

• The Remote Control Device currently bound to the DAE application sends a pre-defined URL
“/rcf/drop_connection”.

• The DAE application drops the connection with the Remote Control Device by using the dropConnection()
method.

• The OITF provide a timer mechanism to drop the connection with the Remote Control Device after a period of
inactivity (i.e. no HTTP requests received and no HTTP responses sent). The value of the inactivity timer expiry is
terminal specific. One timer will be assigned per Remote Control Device.

If the OITF is unable to dispatch requests to that application (e.g. because the application has terminated or because the
application/oipfRemoteControlFunction object has been destroyed), the request SHALL fail (the OITF sends
an HTTP 500 response to the Remote Control Device). If the OITF is notified that the Remote Control Device is no
longer connected to the network, then the OITF SHALL allow other Remote Control Devices to connect to the
application and assume control.

Below is example showing a mapping relationship between Remote Control Devices and DAE applications.

• Remote Control Device 1 is mapped to DAE application A. The Remote Control Device sends a request to drop the
connection with A, using the pre-defined URL “/rcf/drop_connection” and then makes a request to DAE
application B. DAE application B responds to the Remote Control Device. The OITF updates its internal state to
show that Remote Control Device 1 is now mapped to DAE application B.

Page 288 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Remote Control Device 2 is mapped to DAE application C. A second Remote Control Device 3 then makes a request
to DAE application C. The OITF sends an HTTP 500 response to the Remote Control Device 3.

DAE app (C)

 Remote Device (2) Remote Device (3)

Device handle DAE app handle

2 C

DAE app (A) DAE app (B)

Remote Control
Device (1)

Changed

Device handle DAE app handle

1 A

1 B

Page 289 (356)

 Copyright 2010 © Open IPTV Forum e.V.

9 Capabilities

9.1 Minimum DAE capability requirements
This section defines minimum capabilities which OITF implementations are required to provide to the Declarative
Application Environment and the applications running in that environment.

The following section defines minimum capabilities which SHALL apply to all OITFs.

OITFs MAY support multiple simultaneous applications loaded and running in the browser.

When the CEA-2014 notification framework (see section 5.3.1) is supported, OITFs SHALL support at least 2 DAE
applications being visible at one time, one application showing a notification in the notification window (as defined in
Section 5.6.3 of CEA-2014-A) and one in the main browser area. OITFs MAY support more than one DAE application
being visible at one time in the main browser area. On OITFs where only one DAE application is visible at one time in
the main browser area, it is OITF implementation specific how the visible application is changed.

OITFs with an HD output SHALL support 1280x720 graphics on that output when HD video is being decoded or when
no video is being decoded. OITFs MAY support 1920x1080 graphics.

The present document does not define any requirements concerning support for SD graphics.

OITFs SHALL support unrestricted scaling of IP delivered video.

The present document does not define any requirements for scaling of video not delivered via IP, e.g. in hybrid OITFs.

The present document does not define requirements for supporting decoder format conversion.

The present document does not define requirements for pixel depth in the graphics system except that OITFs SHALL
support at least one bit of per-pixel alpha.

The present document does not require the capability to mix audio from memory and audio from a currently decoded
stream.

OITFs SHALL support decoding one stream containing video and audio. They MAY support decoding more than one
stream.

OITFs SHALL support the “Tiresias Screenfont” font or equivalent with the “Generic Application Western European
Character Set” as defined in Annex C of [TS 102 809]. They MAY support other fonts in addition.

OITFs SHALL provide some means for text input. The present document does not specify any particular solution.

The present document recommends support for pointer based input. Please note that Annex B contains some
requirements regarding pointer based input.

In their SSL/TLS implementation, OITFs SHALL support

a) key lengths of up to 2048 bits for the asymmetric encryption part

b) for the symmetric part, at least 128-bit for AES and at least 168-bit for 3DES

c) for verifying server certificates, at least these root certificates:

1. Thawte Personal Basic CA

2. Thawte Personal Freemail CA

3. Thawte Personal Premium CA

4. Thawte Premium Server CA

5. Thawte Server CA

6. Thawte Timestamping CA

Page 290 (356)

 Copyright 2010 © Open IPTV Forum e.V.

7. VeriSign, Inc. Class 1-3 Public Primary Certification Authority G1

8. VeriSign, Inc. Class 1-4 Public Primary Certification Authority G2

9. VeriSign, Inc. Class 1-4 Public Primary Certification Authority G3

10. RSA Security 2048 v3

11. RSA Security 1024 v3

12. Equifax Secure CA

13. Entrust.net CA

14. Entrust.net CA 2048

15. Entrust.net Client CA

16. GTE CyberTrust Global Root

17. Microsoft Root Authority

The present document does not define requirements for minimum memory sizes for DAE applications or OITF behaviour
when available memory is low. This specification is deliberately silent about the conditions under which the LowMemory
event defined in section 7.2.1.4 is generated.

OITFs SHALL provide support for cookies as defined in [RFC2109].

In addition to what is specified in [RFC2109], the following limits are defined:

• OITFs SHALL support at least 100 cookies with a maximum of 20 per domain and a maximum size for any
individual cookie of 4096 bytes (as measured by the sum of the lengths of the cookie's name, value, and attributes).

• If the cookie is bigger than 4096 bytes it SHALL be discarded, not truncated.

• OITFs SHALL support a maximum total size for the “Set-Cookie” header of 5120 bytes. If the header is bigger than
5120 bytes, it SHALL be discarded, not truncated.

The present document does not require control of audio volume to be exposed to the DAE.

The OITF SHALL include a mechanism for the end user to generate the following key events:

• VK_0 – VK_9

• VK_UP, VK_DOWN, VK_LEFT, VK_RIGHT, VK_ENTER ,VK_BACK

• VK_RED, VK_GREEN, VK_YELLOW, VK_BLUE

Because physical color keys may not always be available on remote controls, DAE applications which use the colour
keys SHOULD make the same feature, function or link accessible through a button in their user interface which can be
navigated to by up, down, left and right and selected with enter / OK and SHOULD make their intended usage
known through the Keyset object as defined in Section 7.2.5

If the OITF includes a mechanism to generate the following key events then they SHALL be available to DAE
applications and SHALL be indicated as part of the capability mechanism defined in section 9 of this specification.

• VK_PLAY, VK_PAUSE, VK_STOP, VK_NEXT, VK_PREV

• VK_PLAY_PAUSE

• VK_FAST_FWD

• VK_REWIND

Page 291 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Note: Some remote controls have separate “play” and “pause” keys; others have a single “play/pause” toggle key. For
that reason, in general, it is recommended that applications are written to handle both the VK_PLAY/VK_PAUSE key
codes and the VK_PLAY_PAUSE key code.

The OITF MAY include mechanisms to generate the following key events and if it does, making them available to DAE
applications is OPTIONAL.

• VK_HOME

• VK_MENU

• VK_GUIDE

• VK_TELETEXT

• VK_SUBTITLES

• VK_CHANNEL_UP

• VK_CHANNEL_DOWN

• VK_VOLUME_UP

• VK_VOLUME_DOWN

• VK_MUTE

Where OITFs make other remote control key events available to DAE applications, this SHALL be done as specified by
the capability mechanism defined in section 9 of this specification. Whenever applicable, this SHOULD be done using
the complementary UI profiles defined in the next paragraph.

9.2 Default UI profiles
The OITF SHALL support at least one of the UI-related base profiles defined in Table 14.

Table 14: Base UI Profile Names

Base UI Profile Name Default values

"OITF_SDEU_UIPROF" <width>720</width>

<height>576</height>

<colors>high</colors>

<hscroll>false</hscroll>

<vscroll>true</vscroll>

Tiresias with
support for the Unicode character range “Basic Euro Latin Character
set” as defined in Annex C of [TS 102 809].

<key>VK_BACK</key>

<navigationkeys>true</navigationkeys>

<numerickeys>true</numerickeys>

<pointer>false</pointer>

Page 292 (356)

 Copyright 2010 © Open IPTV Forum e.V.

<security protocolNames="ssl tls">true</security>

<overlay>per-pixel</overlay><!-- whereby at least one level of
partial transparency between graphics and video must be supported
as per the minimum requirements of Section 9.1 -->

<overlaylocal>per-pixel</overlaylocal><!-- whereby at least one
level of partial transparency between graphics and video must be
supported as per the minimum requirements of Section 9.1 -->

<overlaylocaltuner>per-pixel</overlaylocaltuner><!-- whereby at
least one level of partial transparency between graphics and video
must be supported as per the minimum requirements of Section 9.1
-->

<overlayIPbroadcast>per-pixel</overlayIPBroadcast><!-- whereby
at least one level of partial transparency between graphics and
video must be supported as per the minimum requirements of
Section 9.1 -->

<notificationscripts>false</notificationscripts>
<save-restore>false</save-restore>

"OITF_SD60_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>720</width>
<height>480</height>

"OITF_SDUS_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>640</width>
<height>480</height>

"OITF_HD_UIPROF" Same as OITF_SDEU_UIPROF, with the following modifications:

<width>1280</width>
<height>720</height>
<colors>high</colors>
Tiresias Screenfont
with support for the Unicode character range “Generic Application
Western European Character Set” as defined in Annex C of [TS 102
809].

"OITF_FULL_HD_UIPROF" Same as OITF_HD_UIPROF, with the following modifications:

<width>1920</width>
<height>1080</height>

In order to capture the heterogeneity of the features supported by OITF devices, this specification also defines a set of
complementary UI Profile name fragments, each constituting a particular logical subset of capabilities, for which a OITF
can indicate support by appending the UI Profile name fragment to the name of the supported base UI profile as defined
in Table 14. Both the OITF and server SHALL support the concatenation of a series of UI profile name fragments in any
order.

Page 293 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Table 15: Complementary UI Profile Name Fragments

UI Profile Name Fragment Default values

"+TRICKMODE" <key>VK_PLAY</key><key>VK_PAUSE</key> and/or

<key>VK_PLAY_PAUSE</key> (*)

<key>VK_STOP</key>

<key>VK_REWIND</key>

<key>VK_FAST_FWD</key>

(*) The +TRICKMODE profile fragment identifier does not
distinguish between remote controls having separate “play” and
“pause” keys; and remote controls having a single “play/pause”
toggle key. For that reason, in general, it is recommended that
applications are written to handle both the VK_PLAY/VK_PAUSE
key codes and the VK_PLAY_PAUSE key code

"+AVCAD" <video_profile
type="application/vnd.oipf.ContentAccessStreaming+xml"/>

"+DL" <download protocolNames="http">true</download>

"+IPTV_SDS" <video_broadcast type=”ID_IPTV_SDS”
scaling=”arbitrary”>true</video_broadcast>

"+IPTV_URI" <video_broadcast type=”ID_IPTV_URI”
scaling=”arbitrary”>true</video_broadcast>

"+ANA" <video_broadcast type=”ID_ANALOG”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_C" <video_broadcast type=”ID_DVB_C ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_T" <video_broadcast type=”ID_DVB_T ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_S" <video_broadcast type=”ID_DVB_S ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_C2" <video_broadcast type=”ID_DVB_C2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_T2" <video_broadcast type=”ID_DVB_T2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+DVB_S2" <video_broadcast type=”ID_DVB_S2 ID_DVB_SI_DIRECT”
scaling=”quarterscreen”>true</video_broadcast>

"+ISDB_C" <video_broadcast type=”ID_ISDB_C”
scaling=”quarterscreen”>true</video_broadcast>

"+ISDB_T" <video_broadcast type=”ID_ISDB_T”
scaling=”quarterscreen”>true</video_broadcast>

Page 294 (356)

 Copyright 2010 © Open IPTV Forum e.V.

"+ISDB_S" <video_broadcast type=”ID_ISDB_S”
scaling=”quarterscreen”>true</video_broadcast>

"+META_BCG” <clientMetadata type=”bcg”>true</clientMetadata >

"+META_EIT” <clientMetadata type=”eit-pf”>true</clientMetadata >

“+META_SI” <clientMetadata type=”dvb-si”>true</clientMetadata >

"+ITV_KEYS" <key>VK_HOME</key>

<key>VK_MENU</key>

<key>VK_CANCEL</key>

<key>VK_SUBTITLES</key>

<colorkeys>true</colorkeys>

"+CONTROLLED" <key>VK_CHANNEL_UP</key>

<key>VK_CHANNEL_DOWN</key>

<key>VK_VOLUME_UP</key>

<key>VK_VOLUME_DOWN</key>

<key>VK_MUTE</key>

<configurationChanges>true</configurationChanges>

<extendedAVControl>true</extendedAVControl>

When relevant (i.e. when coupled with +DL, resp +PVR):

<download manageDownloads="sameDomain">true</download>

<recording manageRecordings="sameDomain">true</ recording >

<remote_diagnostics>true</remote_diagnostics>

”+PVR” <key>VK_RECORD</key>

<recording>true</recording>

"+DRM" <drm DRMSystemID="urn:dvb:casystemid:19188">TS_BBTS
TTS_BBTS MP4_PDCF</drm>

“+IMS” <ims>true</ims>

“+SVG” <mime-extensions>image/svg+xml</mime-extensions>

“+POINTER” <pointer>true</pointer>

“+POLLNOTIF” <pollingNotifications>true</pollingNotifications>

“+WIDGETS” <widgets>true</widgets>

Page 295 (356)

 Copyright 2010 © Open IPTV Forum e.V.

“+HTML5_MEDIA” <html5_media>true</html5_media>

“+RCF” <remoteControlFunction>true</ remoteControlFunction>

(*) If an OITF supports the DLNA RUI RCF as defined in Section
7.17, the 3rd party multicast notification mechanism as defined in
Section 5.6.1 of [CEA-2014-A] SHALL be supported for the OITF to
send the 3rd party multicast notification to the DLNA RUICs.

Whenever an OITF supports an extension to the capabilities that can be defined using a combination of a base UI Profiles
and a (number of) UI Profile fragment(s), it SHALL advertise this extension using the mechanism as defined in Section
8.1.

9.3 CEA-2014 capability negotiation and extensions
This section contains extensions and modifications to the CEA-2014 [CEA-2014-A] capability negotiation mechanism.
The XML format that is used to describe the capabilities forms the basis for the profile definitions and profile fragments
as defined in Section 9.2, and is also the format that is used by the “xmlCapabilities” property of the
application/oipfCapabilities object.

The schema with the extensions and modifications to the capability description as defined in this section can be found in
Annex F. The schema in Annex F SHALL be used instead of the existing capability description schema as defined in
Annex C of CEA-2014 [CEA-2014-A].

The conveyance of the OITF capability description through the User-Agent header is described in Section 8.1.

Examples of valid OITF capability profiles are (using the full XML syntax as defined in Annex F):

A pure HD-capable IPTV OITF, which supports live DVB-IP TV via SD&S, streamed mpeg at SD and HD formats, the
MPAA parental rating scheme, trickplay, and access to an embedded BCG metadata client:

<profilelist>
 <ui_profile
 name="OITF_HD_UIPROF+IPTV_SDS+AVCAD+META_BCG+TRICKMODE+ITV_KEYS+CONTROLLED+DRM">
 <ext>
 <parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001">
 true
 </parentalcontrol>
 </ext>
 </ui_profile>
 <video_profile name="TS_AVC_SD_25_HEAAC"
 type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>

 <video_profile name="TS_AVC_HD_25_HEAAC"
 type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>
</profilelist>

A hybrid HD-capable box, supporting live DVB broadcasts over satellite, PVR functionality, and (Marlin-protected and
unprotected) VoD in progressive download:

<profilelist>
 <ui_profile
 name="OITF_HD_UIPROF+AVCAD+TRICKMODE+ITV_KEYS+CONTROLLED+DRM+DVB_S+META_SI+PVR">
 </ui_profile>
 <video_profile name="TS_AVC_SD_25_HEAAC"
 type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>

 <video_profile name="TS_AVC_HD_25_HEAAC"
 type="video/mpeg"
 transport="http-get rtsp-rtp-udp"
 DRMSystemID="urn:dvb:casystemid:19188"/>

Page 296 (356)

 Copyright 2010 © Open IPTV Forum e.V.

</profilelist>

A hybrid device providing access to its ATSC terrestrial tuner (supporting two different parental rating schemes), DVB-
IPTV ‘tuner’, and PVR functionality to DAE applications, but not exposing ‘trickmode’ or ‘controlled’ key events to
DAE applications running in the browser:

<profilelist>
 <ui_profile name="OITF_HD_UIPROF+PVR+IPTV_SDS">
 <ext>
 <video_broadcast type="ID_ATSC_T" scaling="arbitrary">true</video_broadcast>
 <parentalcontrol schemes="urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001
 urn:mpeg:mpeg7:cs:MPAAParentalRatingTVCS:2001">
 true
 </parentalcontrol>
 </ext>
 </ui_profile>
</profilelist>

9.3.1 Tuner/broadcast capability indication

If an OITF supports control over its local tuner functionality by a server, an OITF SHALL indicate this through the base
profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the schema defined in
Annex F. To this end the following new elements SHALL be supported for a capability description or capability profile
(see Annex F for more information):

<video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control of its local
tuner functionality by a server (i.e. retrieving the tuner’s channel line up, switching channels of the tuner, and rendering
the output of the broadcasted content inside the browser). The <video_broadcast> element has the following attributes:

• Attribute type specifies the type(s) of tuner(s) for which the OITF allows tuner control, by using a space-separated
list of idType values as specified in Section 7.13.12.1 for the Channel object (i.e. “ID_ANALOG”, “ID_DVB_C”,
etc.).

• Attribute transport specifies a space-separated list of supported (transport) protocols in case of IP Broadcasts (i.e. if
the type attribute contains one of the ID_IPTV_* idType values as specified in Section 7.13.12.1). This is done by
using one or more of the (transport) protocol names as defined in Annex F of the [Protocols specification].

• Attribute scaling specifies the method of video scaling the OITF supports for the tuner output (i.e. “arbitrary”,
“quartersize”, “0.33x0.33” or “none”), with default value “arbitrary” if omitted.

• Attribute minSize specifies the minimal size, as a percentage of the full extent of the OITF’s display, to which the
OITF supports scaling of video content received over the (logical or physical) tuner if attribute scaling has value
“arbitrary”. The value “0” for the minSize attribute indicates support for arbitrary and unrestricted scaling of the
video. The value of the attribute minSize SHALL be silently ignored if the value of the attribute scaling is not
“arbitrary”.

• Attribute nrstreams provides an indication of the number of video streams that can be rendered simultaneously by
the indicated tuner functionality (typically limited by the number of tuners supported by the device), with a default
value of “1” if omitted.

• Attribute postList specifies, if included in the client’s capability description, whether or not the OITF supports the
HTTP POST method defined in Section 4.8.1.2. If included in the server’s capability description, postList specifies
whether or not the server supports using the channel list information sent through the HTTP POST method to
exercise tuner control. If an OITF does not post the channel list information, a server SHALL, irrespective of the
value it specified for the postList attribute in its server capability description, rely on the getChannelConfig
method defined in Section 7.13.1.3 to access the channel list information.

• Attribute localTimeshift indicates whether or not the OITF supports timeshift of scheduled content using local
storage.

• Attribute networkTimeshift indicates whether or not the OITF supports network timeshift of scheduled content.
Different from PVR or local timeshift capability in that no local resources are required to support network timeshift

Page 297 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The <video_broadcast> element is defined using the following XML Schema fragment. Multiple
<video_broadcast> elements may be specified to distinguish between tuners with different behaviour or
capabilities, for example with respect to scaling:

<xs:element name="video_broadcast" type="videoBroadcastType" minOccurs="0"
maxOccurs="unbounded"/>
<xs:complexType name="videoBroadcastType">
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="transport" type="xs:string"/>
 <xs:attribute name="nrstreams" type="xs:unsignedInt" default="1"/>
 <xs:attribute name="scaling" type="scalingType" default="arbitrary"/>
 <xs:attribute name="minSize" type="xs:unsignedInt" default="0"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 <xs:attribute name="networkTimeshift" type="xs:boolean" default="false"/>
 <xs:attribute name="localTimeshift" type="xs:boolean" default="false"/>
</xs:complexType>

<overlaylocaltuner> - indicates whether or not the OITF supports overlays for video broadcasts received through the
local tuner, i.e. allows XHTML content to be rendered on top of video content broadcasted over local tuner. If included,
the value of this element SHALL be: (none|on-off|global|per-pixel), whereby the same requirements as defined for
element <overlay> in [Req. 5.2.1.a] of CEA-2014-A SHALL apply.

NOTE: As defined by [Req. 5.2.1.e] of CEA-2014-A also a server MAY use these elements in the server capability
description, if a server requires control of the tuner functionality of an OITF for the correct rendering of its service.

9.3.2 Broadcast content over IP capability indicati on

If an OITF supports functionality for rendering the output of the broadcasted content received over IP inside the browser
and optionally providing an IPTV related channel line-up and favourite list to the server, an OITF SHALL indicate this
through the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
schema defined in Annex F. This SHALL be done using the same <video_broadcast> element as defined in Section
9.3.1, whereby the type attribute contains one of the ID_IPTV_* idType values as specified in Section 7.13.12.1:

• <video_broadcast> - indicates whether or not the OITF supports the video/broadcast object to enable control
rendering the output of the broadcasted content received over IP inside the browser and optionally providing an
IPTV related channel line-up and favourite list to the server.

To indicate support for overlays over IP broadcasts the following element SHALL be used (see Annex F for more
information):

• <overlayIPbroadcast> - indicates whether or not the OITF supports overlays for IP video broadcasts, i.e. allows
XHTML content to be rendered on top of video content broadcasted over IP. If included, the value of this element
SHALL be: (none|on-off|global|per-pixel), whereby the same requirements as defined for element <overlay> in
[Req. 5.2.1.a] of CEA-2014-A SHALL apply.

9.3.3 PVR capability indication

Support for the control of recording functionality that is available to the OITF by a server SHALL be indicated through
the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the <recording>
element defined in Annex F. This specification defines the following element that can be added to a capability
description:

<recording> - indicates whether or not the OITF supports control of its local recording (i.e. PVR) functionality by a
server. If included, the value of this element SHALL be (true|false). The boolean attribute ipBroadcast specifies whether
or not the OITF also supports recording of A/V content broadcasted over IP, and the Boolean attribute postList specifies
whether or not the OITF supports the HTTP POST method defined in Section 4.8.2, respectively whether or not the
server uses the posted channel list information, if conveyed by the OITF, to control the recording functionality available
to the OITF. If an OITF does not post the channel list information, a server SHALL, irrespective of the value it specified
for the postList attribute, rely on the getChannelConfig() method defined in Section 7.10.1.1 to access the channel

Page 298 (356)

 Copyright 2010 © Open IPTV Forum e.V.

list information. The Boolean attribute manageRecordings specifies whether or not the OITF supports managing
recordings through the ECMAScript APIs defined in section 7.10.4.

The <recording> element is defined using the following XML Schema fragment (see Annex F for more information):

<xs:element name="recording" type="pvrType"/>
 <xs:complexType name="pvrType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="ipBroadcast" type="xs:boolean" default="false"/>
 <xs:attribute name="manageRecordings" type="xs:string" default="none"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

If the manageRecordings attribute is present, this attribute SHALL take one of the following values:

• “none” : indicates that the client does not support managing recordings.

• “initiator” : indicates that recordings initiated by the current application may be managed.

• “samedomain”: indicates that recordings initiated by applications from the same fully-qualified domain may be
managed.

• “all” : indicates that recordings initiated both by the current application and other applications may be managed.

If not present, a value of “none” SHALL be assumed.

9.3.4 Download CoD capability indication

If a client supports downloading content to a client (with or without DRM protection), the client SHALL indicate this
through the base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
schema defined in Annex F. The <download> element SHALL adhere to the definition of bullet o) of [Req. 5.2.1.a] of
CEA-2014-A.

A client MAY include an informative list of MIME types it supports for playback after download through the <mime-
extensions> element. Note that since content download may be separated from content playback, a server SHOULD
NOT rely on this information to be present.

If a client supports managing downloads through the ECMAScript content download API specified in Section 7.4.3 then
the client SHALL indicate this using the attribute manageDownloads. This attribute has the following definition (see
Annex F for more information):

<xs:attribute name="manageDownloads" type="xs:string" default="none"/>

If present, this attribute SHALL take one of the following values:

• “none” : indicates that the client does not support managing downloads.

• “initiator” : indicates that downloads initiated by the current application may be managed.

• “samedomain”: indicates that downloads initiated by applications from the same fully-qualified domain may be
managed.

• “all” : indicates that downloads initiated both by the current application and other applications may be managed.

If not present, a value of “none” SHALL be assumed.

Example:

<download protocolNames="http ftp" manageDownloads="all" > true </download>

Page 299 (356)

 Copyright 2010 © Open IPTV Forum e.V.

9.3.5 Parental ratings

If an OITF supports a parental control system, the OITF SHALL indicate this by using the value “true” for element
<parentalcontrol> in the OITF capability profile/description, and define a space separated list of names of parental rating
schemes using the “schemes” attribute.

The schema of the <parentalcontrol> element is defined as follows (see Annex F for more information):

<xs:element name="parentalcontrol" type="parentalControlType"/>
<xs:complexType name="parentalControlType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name=”schemes” type=”xs:string”/>

 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

For which the following semantics SHALL apply:

<parentalcontrol> - indicates whether or not the OITF supports a client controlled parental control system. If included
in the OITF capability description, the value of this element SHALL be: (true|false). The <parentalcontrol> element has
the following attributes:

• attribute “schemes”: SHALL be a non-empty space separated list of case-insensitive names of parental rating
schemes registered with the platform (either by the manufacturer, or by applications where the rating scheme is
associated with a recording), if the value of the <parentalcontrol> element is true. Valid rating schemes names
include the ParentalRating classification scheme names as defined by property “scheme” of the ParentalRating
object as defined in Section 7.9.4.

Example:

<parentalcontrol schemes="dvb-si urn:mpeg:mpeg7:cs:MPAAParentalRatingCS:2001">
 true
</parentalcontrol>

9.3.6 Extended A/V API support

The OITF SHALL indicate support for the extended A/V control APIs defined in section 7.13.7 through the base profile
and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the <extendedAVControl>
element defined in Annex F:

<xs:element name="extendedAVControl" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.7 OITF Metadata API support

The OITF SHALL indicate support for client-side metadata processing and the APIs defined in section 7.12 through the
base profile and UI profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the
<clientMetadata> element defined in Annex F:

<xs:element name="clientMetadata" type="metadataType"/>
<xs:complexType name="metadataType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="type" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

This element has the following semantics:

<clientMetadata> - indicates whether or not the OITF supports a client-side metadata processing. If included in the RUI
Client capability description, the value of this element SHALL be: (true|false). The <clientMetadata> element has the
following attributes:

Page 300 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• attribute “type” SHALL include a non-empty space separated list of names of supported metadata
systems/protocols, if the value of the <clientmetadata> element is true.

Below is an extensible list of case insensitive metadata system/protocol names which MAY be used for this attribute:

o “bcg” : indicates support for the TV-Anytime Broadband Content Guide metadata format.
o “sd-s” : indicates support for the DVB SD&S metadata format.
o “dvb-si” : indicates support for the DVB-SI metadata format.
o “eit-pf ”: indicates support for EIT present/following information as defined for DVB-SI in Section 4.1.3 of

[OIPF_META2]

9.3.8 OITF Configuration API support

The OITF SHALL indicate support for modification of OITF configuration and settings by applications (via the APIs
defined in section 7.3) through the base profile and UI profile name fragment strings as defined in section 9.2 “Default
UI Profiles” and the <configurationChanges> element defined in Annex F:

<xs:element name="configurationChanges" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.9 IMS API Support

The OITF SHALL indicate support for IMS API (via the APIs defined in section 7.8) through the base profile and UI
profile name fragment strings as defined in section 9.2 “Default UI Profiles” and the <ims> element defined in Annex F:

<xs:element name="ims" type="xs:boolean"/>

<xs:element name="communication_services" type="xs:boolean"/>

If included, the value of these elements SHALL be: (true|false).

9.3.10 DRM capability indication

The OITF SHALL indicate support for handling DRM-protected content through the base profile and UI profile name
fragment strings as defined in section 9.2 “Default UI Profiles” and the <drm> element defined in Annex F:

<xs:element name="drm" type="drmType" minOccurs="0" maxOccurs="unbounded"/>
<xs:complexType name="drmType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="DRMSystemID" type="xs:string" use="required"/>
 <xs:attribute name="protectionGateways" type="xs:string" default=””/>
 </xs:extension>

 </xs:simpleContent>
</xs:complexType>

And with the following semantics:

<drm> - indicates whether or not the client supports a DRM content protection system for downloading and streaming
content. If included in the RUI Client capability description, the value of this element SHALL be a space separated list of
zero or more case-insensitive names of supported file and/or container formats for protected content by the DRM system
indicated by the "DRMSystemID" attribute, such as the OMA DRM Content Format (DCF). Valid values include: the
system_format name of the first column of Table 3 of [MEDIA], and a protection format of the second column of Table
3 of [MEDIA], concatenated with an underscore ‘_’. In case of the Gateway centric approach defined by [OIPF_CSP2],
this attribute indicates the protectionFormats which are supported by the combination of OITF and CSP Gateway and
may be omitted.

The <drm> element has the following attributes:

• attribute “DRMSystemID” SHALL include a supported DRM system. Valid values for the "DRMSystemID"
include the values as defined by element DRMSystemID in Table 8 of Section 3.3.2 of [OIPF_META2]. For
example, for Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”. In case of the Gateway centric

Page 301 (356)

 Copyright 2010 © Open IPTV Forum e.V.

approach defined by [OIPF_CSP2], this DRMsystemID attribute indicates the DRM System(s) of UNIS-CSP-G
which is supported by the combination of OITF and CSP Gateway.

• attribute “protectionGateways” SHALL include a space separated list of zero or more case-insensitive names of
supported CSP Gateway types that are capable of supporting the DRM system indicated by attribute
“DRMSystemID”. This attribute is conditional mandatory and SHALL be specified in the case that the DRM
System indicated by the “DRMSystemID” attribute is supported by the CSP Gateway. Valid values for the scheme
for the Gateway centric approach defined by [OIPF_CSP2] are “dtcp-ip” and “ci+”.

Examples:

<drm DRMSystemID="urn:dvb:casystemid:19188" >TS_BBTS TTS_BBTS MP4_PDCF</drm>
<drm DRMSystemID="urn:dvb:casystemid:12348" protectionGateways="ci+">TS_PF TTS_PF</drm>
<drm DRMSystemID="urn:dvb:casystemid:12348" protectionGateways="dtcp-ip">TS_PF</drm>

9.3.11 Media profile capability indication

If an OITF supports streaming A/V content to the client, the client SHALL indicate this by including a non-empty list of
<audio_profile> and/or <video_profile> elements in the RUI client capability description. The <audio_profile> and
<video_profile> elements SHALL adhere to the following requirements in addition to what has been defined by bullet v)
and w) of [Req. 5.2.1.a] of CEA-2014-A:

• Valid values for the “type”-attribute of the <audio_profile> and <video_profile> elements include the MIME types
given in Section 3 of [OIPF_MEDIA2].

• Valid values for the “name”-attribute include:

o for <video_profile> elements: the system format name, the video format name and the audio format name for
A/V contents, concatenated with an underscore ‘_’, as defined in Section 3 of [OIPF_MEDIA2].

o for <audio_profile> elements: the audio format name for pure audio contents in Table 4 of [OIPF_MEDIA2]
o for both <video_profile>, and <audio_profile> elements, it is allowed to include multiple profile names

corresponding to the same MIME type, by separating each profile name with a whitespace character.

• Valid values for the “transport”-attribute include (a space-separated list of) the protocol names as defined in the
column “Name for <protocol>” in Annex E.1 of [OIPF_PROT2], whereby the value “http” as specified as default
value for the “transport”-attribute in CEA-2014-A SHALL correspond to value “http-get”.

• The <video_profile> and <audio_profile> elements SHALL support a new attribute called “DRMSystemID”, which
SHALLinclude a space separated list of zero or more DRM system IDs supported for the media profile(s), whereby
the DRMSystemID SHALL correspond to a <drm> element (as defined in section 9.3.10. about DRM capability
indication) with the same value for attribute “DRMSystemID”. In the case the attribute “DRMsystemID” is specified,
non-protected A/V contents of the media profile(s) SHALL be also supported. For non protected media profile(s),
this attribute MAY be omitted (see Annex F for more information).

• Next to providing the list of supported audio and video profiles, the client SHALL include an <audio_profile>
element and/or a <video_profile> element with the value “application/vnd.oipf.ContentAccessStreaming+xml” for
attribute “type”, to indicate support for the content access description document format as defined in 4.7.1 as value
for the “data” attribute of the A/V Control object as defined by [CEA-2014-A] to initiate the streaming of content.

Examples:

<video_profile type="application/vnd.oipf.ContentAccessStreaming+xml"/>

<video_profile
 name="TS_MPEG2_SD_25_AC3 TS_AVC_HD_25_HEAAC"
 type="video/mpeg"
 DRMSystemID=”urn:dvb:casystemid:19188”
 transport=”rtsp-rtp-udp”
/>

<video_profile
 name="MP4_MPEG2_SD_25_AC3 MP4_AVC_HD_25_HEAAC"
 type="video/mp4"
 transport=”http-get”
/>

<video_profile
 name="TS_AVC_HD_25_HEAAC"

Page 302 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 type=”application/x-dtcp1”
 DRMSystemID=”urn:dvb:casystemid:12348"
 transport=”http-get”
/>

<audio_profile name="MPEG1_L3" type="audio/mpeg" transport=”http-get”/>

9.3.12 Remote diagnostics support

The OITF SHALL indicate support for remote diagnostics (via the APIs defined in section 7.11) using the following
element in the OITF’s capability description (see Annex F for more information):

<xs:element name="remote_diagnostics" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.13 SVG

The OITF SHALL indicate support for SVG through the base profile and UI profile name fragment strings as defined in
section 9.2 or as defined in section 6.4 using the Remote UI Client Capability Description defined for SVG in that section
- image/svg+xml.

In order to determine support for video tag in SVG the hasFeature() method with argument
“http://www.w3.org/Graphics/SVG/feature/1.2/#Video” shall be used. Example:

var hasvideo =
document.implementation.hasFeature("http://www.w3.org/Graphics/SVG/feature/1.2/#Video",
 null)

9.3.14 Third party notification support

If an OITF supports the 3rd party polling mechanism as defined in Section 5.6.2 of [CEA-2014-A], including the
extensions to 5.6.2 as defined in Annex B, through the base profile and UI profile name fragment strings as defined in
section 9.2 “Default UI Profiles” and the <pollingNotifications> element defined in Annex F:

<xs:element name="pollingNotifications" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.15 Multicast Delivery Terminating Function supp ort

The OITF SHALL indicate support for the multicast delivery terminating function (via the APIs defined in section
7.15.1) using the following element in the OITF’s capability description (see Annex F for more information):

<xs:element name="mdtf" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.16 HTML5 video

The OITF SHALL indicate support for HTML5 video through the base profile and UI profile name fragment strings as
defined in section 9.2 and the <html5_media> element as defined in Annex F:

<xs:element name="html5_media" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

Page 303 (356)

 Copyright 2010 © Open IPTV Forum e.V.

9.3.17 DLNA RUI Remote Control Function support

The OITF SHALL indicate support for the DLNA RUI RCF (via the APIs defined in section 7.17) using the following
element in the OITF’s capability description (see Annex F for more information):

<xs:element name="remoteControlFunction" type="xs:boolean"/>

If included, the value of this element SHALL be: (true|false).

9.3.18 Power Consumption

The OITF SHALL indicate support for wake-up using the following elements in the OITF’s capability description (see
Annex F for more information):

<xs:element name="wakeupApplication" type="xs:boolean"/>
<xs:element name="wakeupOITF" type="xs:boolean"/>
<xs:element name="hibernateMode" type="xs:boolean"/>

If included, the value of these elements SHALL be: (true|false).

9.3.19 Other capability extensions

The following extensions to the capability profile elements defined in [Req. 5.2.1.a] of CEA-2014-A SHALL be
supported:

a) an additional value “0.33x0.33” for attribute “scaling” of the <video_profile> element in bullet w) of [Req.
5.2.1.a], with the following related extension to the schema for type “scalingType” (see Annex F for more
information):

<xs:enumeration value="0.33x0.33"/>

9.3.20 Widgets

The OITF SHALL indicate support for Widget APIs through the base profile and UI profile name fragment strings as
defined in section 9.2 “Default UI Profiles” and the <widgets> element defined in Annex F:

<xs:element name="widgets" type="xs:boolean"/>

If included, the value of these elements SHALL be: (true|false).

Widget APIs are the following Widget related methods/attributes defined in sections 7.2.1 and 7.2.2:

• ApplicationManager.onWidgetInstallation

• ApplicationManager.onWidgetUninstallation

• ApplicationManager.installWidget

• Application.startWidget

• Application.stopWidget

• ApplicationManager.uninstallWidget

• ApplicationManager.widgets

Page 304 (356)

 Copyright 2010 © Open IPTV Forum e.V.

10 Security

10.1 Application / Service Security
This section defines the security model that applies to the privileged functionality exposed by an OITF to a server device.
The main purpose of the security model is to protect local client side functionality exposed by an OITF to Javascript from
unauthorized use. For example in the case of PVR control API, untrusted servers should be prevented from scheduling
recordings.

The security model is quite generic, in a sense that it is not limited to particular privileged browser extensions, but can be
applied to any local client side functionality exposed to any kind of networked application.

NOTE: The security model makes use of X509v3 certificates over TLS. Management of TLS root certificates, and which
certificate authorities to trust is out of scope of this document.

10.1.1 OITF requirements

The following requirements SHALL apply to OITFs that expose security and/or privacy sensitive (i.e. privileged)
functionality in one or more of the cases described in section 10.1.4.

• An OITF SHALL prevent a HTML document from a server from accessing the exposed security and/or privacy
sensitive functionality, unless the server can be correctly authenticated (see below), and the server is granted the
necessary privileges to access the security and/or privacy sensitive functionality.

• The OITF SHALL authenticate the server during a TLS handshake through a valid X.509v3 certificate, that is
granted by a certificate authority that is trusted by the OITF. To this end, the OITF SHALL match the hostname or
(sub)domainname of the HTML document’s URI with the hostname or (sub)domainname as specified in the
X.509v3 certificate, in the manner as defined in Section 3.1 of IETF RFC 2818.

• The OITF SHALL support the Online Certificate Status Protocol (OCSP), at least the Lightweight Profile as defined
in RFC 5019, to determine the current validity of the X.509v3 certificate before access to privileged functionality is
granted.

• The OITF MAY support a private certificate extension for X.509v3 certificates called “permissions” that specifies a
set of permissions requested by a server to access privileged functionality, through zero or more permission names
associated with privileges. The OITF MAY grant an authenticated server the set of permissions, which are each
associated with the right to access a specific set of privileged functionality. Allowed permissions names include the
permission names as defined in Section 10.1.5.

• The set of permissions granted to an authenticated server by an OITF MAY depend on the occurrence of that server
on a whitelist or blacklist available to the OITF.

• NOTE: Management of whitelists and blacklists available to an OITF is out of scope of this document.

• If the server does not have the necessary privileges to access a property, method or object, or the server cannot be
properly authenticated, the OITF SHALL throw an error with the name property set to the value "SecurityError".
The example below shows how this can be used by applications:

try {
 object.foo()
} catch(e)
{
 if (e.name == "SecurityError") {
 // I am not authorised to do this
 }
}

• The OITF MAY inform the user of the decision to deny a server requested access to privileged functionality and
MAY offer the user the option to override this decision.

10.1.2 Server requirements

The following requirements SHALL apply to servers that wish to access security and/or privacy sensitive (i.e. privileged)
functionality exposed by an OITF, in one or more of the cases defined in Section 10.1.4:

Page 305 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• A server SHALL specify the use of TLS for each HTML document that accesses privileged functionality (i.e. by
using the “https://” URI scheme for the URL of the HTML document).

• A server SHALL expose a valid X.509v3 certificate during the TLS certificate handshake.

• A server MAY request an OITF for certain permissions to access privileged functionality through a private
certificate extension. If a server wants to do so, the server MAY include a private certificate extension called
“permissions” as part of a valid X.509v3 certificate. If included, the “permissions” extension specifies a set of
permissions through zero or more permission names. Allowed permissions names include the permission names as
defined in Section 10.1.5.

10.1.3 Loading documents from different domains

The contents of an <iframe>, <embed> or <object> element may be retrieved from an FQDN other than the one from
which the top-level document is loaded. In this case, the OITF SHALL enforce security restrictions between the contents
of the element and the parent document. These restrictions may be based on the nested browsing context as defined in
Section 6.1.1 of [HTML5] and the security restrictions formalised in Section 6.3.1 of [HTML5], excluding the features
not included in this specification.

Documents SHALL be assigned the permissions associated with the FQDN from which they were loaded, as defined in
section 10.1.1, rather than the permissions associated with the initial document of the application. For example
documents loaded in an <iframe> element may be granted a different set of permissions from the top-level document
that contains the <iframe> element. Similarly, following a link to a document from a different FQDN may result in the
newly-loaded document having a different set of permissions than those granted to the previous document even though
they are within the same application boundary.

As described in section 5.1.3, for files requested with XMLHttpRequest, the Same-Origin Policy SHALL be extended
using the application domain as defined in section 5.1.3.

10.1.4 Specific security requirements for privilege d Javascript APIs

This section defines the specific security requirements for specific privileged Javascript APIs, such as the
tuner/broadcast, recording, content download and DRM related APIs as defined in Sections 7.13, 7.10, 7.4 and 7.6 in
addition to the security requirements defined in sections 10.1.1 and 10.1.2.

10.1.4.1 Security requirements for tuner control an d lineup

Exposure of the channel line up and the video/broadcast APIs for controlling the (local) tuner as specified in Section 7.13
SHALL adhere to the security requirements in Sections 10.1.4.1.1 and 10.1.4.1.2.

10.1.4.1.1 Security requirements for exposure of th e tuner channel lineup

Exposure of the channel line up of the (local) tuner as specified in Section 7.13 SHALL adhere to the following security
requirements:

the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the server has the necessary privileges
to obtain the channel lineup of the (local) tuner. If the server does not have the necessary privileges, or the server cannot
be properly authenticated, the OITF SHALL:

• not convey the Client Channel Listing to the server through a HTTP POST.

• not expose the Client Channel Listing to the DAE application through the getChannelConfig() method of the
video/broadcast object. Attempts to access this method SHALL throw an error as defined in section 10.1.1.

10.1.4.1.2 Security requirements for tuner control

Control of the (local) tuner as specified in Section 7.13 SHALL adhere to the following security requirements:

• the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the server has the necessary
privileges to control the (local) tuner. If the server does not have the necessary privileges or the server cannot be
properly authenticated, the OITF SHALL deny requests to switch a local tuner to another channel by throwing an
error as defined in section 10.1.1.

Page 306 (356)

 Copyright 2010 © Open IPTV Forum e.V.

10.1.4.2 Security requirements for recording

The recording functionality as specified in Section 7.10 SHALL adhere to the following security requirements:

• Recording of broadcasted content: the OITF SHALL perform a security check (as defined by Section 10.1.1) to see
if the server has the necessary privileges to schedule recordings of broadcasts. If the server does not have the
necessary privileges or the server cannot be properly authenticated, the OITF SHALL deny a server’s request to
access the functionality of the application/oipfRecordingScheduler object (as defined by Section 7.10.1),
and SHALL also not expose the Client Channel Listing, neither through the HTTP POST, nor through the
getChannelConfig() method. Furthermore, the OITF SHALL throw an error as defined in section 10.1.1 when
an application loaded from the server attempts to access any properties or methods on the
application/oipfRecordingScheduler object.

• Recording of current A/V content broadcasted: the OITF SHALL perform a security check (as defined by Section
10.1.1) to see if the server has the necessary privileges to record the current broadcast (as defined in Section 7.13.2).
If the server does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL
deny a server’s request to start a recording of the broadcast currently rendered by the video/broadcast object by
throwing an error as defined in section 10.1.1.

• Control over and exposure of scheduled recordings: the OITF SHALL restrict the visibility and control over
scheduled recordings to those scheduled recordings that were initiated through a server from the same FQDN that
scheduled the recordings.

10.1.4.3 Security requirements for content download functionality

The content download functionality as defined in Section 7.4 SHALL adhere to the following security requirements:

• Initiating a download: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the server
has the necessary privileges to initiate a download. If the server does not have the necessary privileges or the server
cannot be properly authenticated, the OITF SHALL NOT start downloading the content after receiving a content-
access description document as defined in Section 4.6.2.

NOTE 1: The server is the server that served the HTML document or third-party notification that includes a link to a
content-access description document. This is not necessarily the same server from which the content is downloaded.

NOTE 2: The URL from which a content item is downloaded (i.e. as specified by a <ContentURL> element in the
content-access description document) does not have to be protected by TLS.

10.1.4.4 Security requirements for DRM related func tionality

The DRM control functionality (i.e. the application/oipfDrmAgent embedded object) as defined in Section 7.6
SHALL adhere to the following security requirements:

• Accessing the DRM agent: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the
server has the necessary privileges to interact with the DRM agent, i.e. by accessing the DRM agent embedded
object as specified in Section 7.6.1. If the server does not have the necessary privileges, or the server cannot be
properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded
from that server attempts to access any of its properties or methods on the DRM agent embedded object.

10.1.4.5 Security requirements for IMS functionalit y

The IMS functionality (i.e. the application/oipfIMS embedded object) as defined in Section 7.8 SHALL adhere to
the following security requirements:

• Accessing the IMS embedded object: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see
if the server has the necessary privileges to interact with the IMS functionality, i.e. by accessing the IMS embedded
object as specified in Section 7.8. If the server does not have the necessary privileges, or the server cannot be
properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application loaded
from that server attempts to access any of the classes, properties or methods defined in Section 7.8.

Page 307 (356)

 Copyright 2010 © Open IPTV Forum e.V.

10.1.4.6 Security requirements for metadata process ing functionality

The metadata processing functionality (i.e. the application/oipfSearchManager embedded object and other
APIs) as defined in Section 7.12 and 7.13.3 SHALL adhere to the following security requirements:

• Accessing the search manager: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if
the server has the necessary privileges to interact with the search manager, i.e. by accessing the
application/oipfSearchManager embedded object as specified in Section 7.12.1. If the server does not have
the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined
in section 10.1.1 when an application loaded from that server attempts to access any of the properties or methods on
the SearchManager embedded object.

• Accessing enhanced metadata: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the
server has the necessary privileges to access the extensions to video/broadcast for accessing EIT p/f
information specified in section 7.13.3, in order to prevent misuse of the EIT p/f information If the server does not
have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as
defined in section 10.1.1 when an application loaded from that server attempts to access to the programmes
property of the video/broadcast object specified in Section 7.13.3.

10.1.4.7 Security requirements for configuration an d settings functionality

The configuration and settings functionality (i.e. the application/oipfConfiguration embedded object and other
APIs) as defined in Section 7.3 SHALL adhere to the following security requirements:

• Reading and modifying configuration and/or settings: the OITF SHALL perform a security check (as defined in
Section 10.1.1) to see if the server has the necessary privileges to interact with the configuration functionality, i.e. by
accessing the configuration embedded object as specified in Section 7.3.1. If the server does not have the necessary
privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as defined in section
10.1.1 when an application loaded from that server attempts to access any of the classes, properties or methods
defined in section 7.3.

10.1.4.8 Security requirements for APIs for OITFs u nder the control of a service
provider

APIs for OITFs under the control of a service provider SHALL adhere to the following security requirements:

• Accessing the extended tuner control APIs: the OITF SHALL perform a security check (as defined in Section 10.1.1)
to see if the server has the necessary privileges to interact with the extended tuner control APIs as specified in
Section 7.13.7. If the server does not have the necessary privileges or the server cannot be properly authenticated, the
OITF SHALL throw an error as defined in section 10.1.1 when an application loaded from that server attempts to
access any of the classes, properties or methods defined in section 7.13.7.

• Accessing the extended PVR APIs: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if
the server has the necessary privileges to interact with the extended PVR APIs as specified in Section 7.10.4. If the
server does not have the necessary privileges or the server cannot be properly authenticated, the OITF SHALL throw
an error as defined in section 10.1.1 when an application loaded from that server attempts to access any of the
classes, properties or methods defined in section 7.10.4.

• Accessing the download manager: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if
the server has the necessary privileges to interact with the download manager, i.e. by accessing the
application/oipfDownloadManager embedded object as specified in Section 7.4.3. If the server does not
have the necessary privileges, or the server cannot be properly authenticated, the OITF SHALL throw an error as
defined in section 10.1.1 when an application loaded from that server attempts to access any of the classes, properties
or methods specified in Section 7.4.3.

• Accessing all downloads: the OITF SHALL perform a security check (as defined in Section 10.1.1) to see if the
server has the necessary privileges to manage downloads not initiated by the current application, i.e. by accessing the
downloads property of the application/oipfDownloadManager embedded object as specified in Section
7.4.3. If the server does not have the necessary privileges, or the server cannot be properly authenticated, the OITF
SHALL throw an error as defined in section 10.1.1 when an application loaded from that server attempts to access
this property.

Page 308 (356)

 Copyright 2010 © Open IPTV Forum e.V.

10.1.4.9 Security requirements for remote diagnosti cs and management API

The remote diagnostics and management API (i.e. application/oipfRemoteManagement) as defined in Section
7.11.1) SHALL adhere to the following security requirements:

• Accessing remote diagnostics and management parameters and/or settings: the OITF SHALL perform a security
check (as defined in Section 10.1.1) to see if the server has the necessary privileges to interact with the remote
diagnostics and management functionality, i.e. by accessing the application/oipfRemoteManagement
embedded object as specified in Section 7.11.1. If the server does not have the necessary privileges, or the server
cannot be properly authenticated, the OITF SHALL throw an error as defined in section 10.1.1 when an application
loaded from that server attempts to access any of the classes, properties or methods defined in section 7.11.1.

10.1.4.10 Security requirements for parental contr ol manager

The parental control manager API (i.e. application/oipfParentalControlManager) as defined in Section
7.9.1) SHALL adhere to the following security requirements:

• Accessing parental control manager functionality: the OITF SHALL perform a security check (as defined in Section
10.1.1) to see if the server has the necessary privileges to interact with the parental control manager functionality, i.e.
by accessing the application/oipfParentalControlmanager embedded object as specified in Section
7.9.1. If the server does not have the necessary privileges, or the server cannot be properly authenticated, the OITF
SHALL throw an error as defined in section 10.1.1 when an application loaded from that server attempts to access
any of the classes, properties or methods defined in section 7.9.1.

10.1.5 Permission names

This section describes a non-limited set of permission names that MAY be included as part of the “permissions”
extension of a X.509v3 certificate as defined in Sections 10.1.1 and 10.1.2:

• “permission_tuner control_lineup”: this permission name allows a server to receive/fetch the tuner’s channel line-up
and to switch an OITF’s local tuner to another channel and to functionality as specified in Section 7.13.

• “permission_tuner_lineup” : this permission name allows a server to receive/fetch the tuner’s channel line-up as
specified in Section 7.13.

• “permission_tuner_control” : this permission name allows a server to switch an OITF’s local tuner to another
channel as specified in Section 7.13.

• “permission_recording” : this permission name allows a server to receive/fetch the tuner’s channel line-up, and to
instantiate the scheduler object (as defined by Section 7.10.1) and access its functionality, and to access the
additional functionality as specified in Section 7.13.2 for the video/broadcast object to record and timeshift the
current broadcast.

• “permission_download” : this permission name allows a server to initiate downloads.

• “permission_drmagent” : this permission name allows a server to interact with the DRM agent, i.e. by accessing the
DRM agent embedded object as specified in Section 7.6.1

• “permission_metadata” : this permission name allows a server to access the DVB EIT p/f information of the current
channel through the “programmes” property of the video/broadcast object, as specified in Section. 7.13.3.

• “permission_metadata_search” : this permission name allows a server to access the search functionality provided
client-side metadata search functionality (as defined in section 7.12.1).

• “permission_extendedAV” : this permission name allows a server to interact with the extended A/V control
functionality provided by the OITF, as defined in section 7.13.7.

• “permission_recordingsmanager” : this permission name allows a server to interact with the recording scheduler on
the OITF using the APIs defined in section 7.4.3 to manage recordings initiated by the current application.

• “permission_recordingsmanager_all” : this permission name allows a server to interact with the recording scheduler
on the OITF using the APIs defined in section 7.4.3 to manage all recordings, including those initiated by other
applications.

Page 309 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• “permission_recordingsmanager_samedomain” : this permission name allows a server to interact with the recording
scheduler on the OITF using the APIs defined in section 7.4.3 and manage recordings initiated by applications from
the same FQDN.

• “permission_clientCOD” : this permission name allows a server to interact with the CoD catalogue browsing
functionality provided by the OITF, as defined in section 7.12.

• “permission_settings” : this permission name allows a server to modify user settings and configuration using the
APIs defined in section 7.3.1.

• “permission_downloadmanager” : this permission name allows a server to interact with the download manager on
the OITF using the APIs defined in section 7.4.3 to control downloads initiated by the current application.

• “permission_downloadmanager_all” : this permission name allows a server to interact with the download manager
on the OITF using the APIs defined in section 7.4.3 and manage all downloads, including those initiated by other
applications.

• “permission_downloadmanager_samedomain” : this permission name allows a server to interact with the download
manager on the OITF using the APIs defined in section 7.4.3 and manage downloads initiated by applications from
the same FQDN.

• “permission ims”: this permission name allows a server to interact with an IMS Gateway using the APIs defined in
section 7.8.

• “permission_remotemanagement”: this permission name allows a server to interact with an remote diagnostics and
management API defined in section 7.11.

• “permission_gatewayinfo” : this permission name allows a server to interact with the gateway discovery
functionality provided by the client, as defined in sections 4.2 and 7.7.

• “permission_parentalcontrolmanager” : this permission name allows a server to interact with the parental control
manager on the OITF using the APIs defined in section 7.9 to override the parental control settings of an OITF.

• “permission_widget” : this permission name allows a server to interact with installed Widgets using the Widget.APIs
defined in section 9.3.20.

• “permission_wakeup” : this permission name allows a server to setup wake-up requests using the APIs defined in
section 7.3.3.

• “permission_set_power” : this permission name allows a server to set the power state to ON or
ACTIVE_STANDBY using the setPowerState() method defined in section 7.3.3.

10.2 User Authentication
The OITF SHALL adhere to the user authentication requirements as specified in Section 5 of [OIPF_CSP2].

10.3 DLNA RUI Remote Control
The communication from the remote control device (DLNA RUIC) is secured by establishing a secure connection using
SSL or TLS (i.e. HTTPS) if a <security> element in a DLNA RUIC Capability Description indicates that the Remote
UI Client supports setting up a secure connection with the Remote UI Server (see Section 5.2.1 of [CEA-2014-A] for
more information). It is the responsibility of the DAE application to require the DLNA RUIC to verify the user behind
the remote control is actually the intended user. For example, this may be established by requiring a PIN number to be
entered. It is outside the scope of this specification what measures are taken by the DAE application to ensure correct
identification of the user.

Page 310 (356)

 Copyright 2010 © Open IPTV Forum e.V.

11 DAE Widgets
DAE Widgets are a specialization of standard DAE applications. DAE Widgets are a profile of W3C Widgets. A
mandatory requirement in the referenced W3C Widgets 1.0 specifications remains mandatory also for DAE Widgets and
recommended and optional requirements in W3C Widgets 1.0 remain recommended and optional for the DAE Widgets,
unless explicitly specified differently inside this document.

11.1 Widgets Packaging and Configuration
A Widget SHALL be packaged in order to allow a single download and installation on an OITF. The packaging format
for the files of a Widget is defined in Section 5 of [Widgets-Packaging]. Content inside the Widget package has to be
organized according to Section 6 of [Widgets-Packaging].

Each Widget package SHALL contain a configuration document as defined in Section 7 of [Widgets-Packaging]. All the
attributes of the <widget> element are supported with the following exceptions and clarifications:

a) This specification does not mandate support for any view mode (as defined in 7.6.1 of [Widgets-Packaging])

b) “id” is mandatory for a DAE Widget. If this attribute is present in the manifest then the OITF SHALL use it.
Otherwise the OITF should generate it internally and assign to the Widget.

Widgets also support Internationalization and Localization as defined in Section 8 of [Widgets-Packaging].

The steps for processing a Widget package and associated processing rules are described in Section 9 of [Widgets-
Packaging].

11.2 Access Request
A Widget running on a OITF can request access to potentially sensitive APIs or resources. In order to avoid data leaking
a security model for Widgets is imposed. DAE Widgets SHALL run in a “Widget execution scope”, defined in section 2
of [Widgets-Access] as “the scope (or set of scopes, seen as a single one for simplicity's sake) being the execution
context for code running from documents that are part of the Widget package”. Note that Section 3 of the same
specification states that “A user agent must prevent the Widget execution scope from retrieving network resources, using
any method (API, linking, etc.) and for any operation, unless the user agent has granted access to an explicitly declared
access request.”

DAE Widgets SHALL also support mechanisms to define network permissions as defined in Section 3 and 4 of
[Widgets-Access].

Note that according to [Widgets-Access] an OITF “may grant access to certain URI schemes without the need of an
access request if its security policy considers those schemes benign”. Furthermore a OITF “may deny access requests
made via the access element (e.g. based on a security policy, user prompting, etc.)”.

11.3 Widget Interface
A set of application programming interfaces (APIs) and events are defined for Widgets that enable baseline functionality
such as exposing Widget metadata and runtime information.

The Widget interface primarily provides access to metadata derived from processing the Widget's configuration
document. DAE Widgets SHALL support the Widgets interface as defined in Section 5 of [Widgets-APIs]. This
specification doesn't define any scheme handlers for the openURL() method.

The Widget interface makes use of the Storage interface defined in Section 4.1 of [Web-Storage]. As an extension of that
specification, Protected Keys in a Storage Area as defined in Section 6.1 of [Widgets-APIs] are also allowed.

Note that as defined in Section 6 of [Widgets-APIs] an OITF SHOULD limit the total amount of space allowed for
storage areas per Widget. Furthermore an OITF SHALL support key and values at least 4kB long.

Page 311 (356)

 Copyright 2010 © Open IPTV Forum e.V.

11.4 Digital Signature
Widget authors and distributors SHALL digitally sign Widgets as a mechanism to ensure continuity of authorship and
distributorship. Prior to instantiation, an OITF SHOULD use the digital signature to verify the integrity of the Widget
package and to confirm the signing key(s).

The process of digitally signing a W3C Widget is defined in [Widgets-DigSig].

Note that as defined in Section 7.3 of [Widgets-DigSig] in case of signature validation failure the user SHALL be
notified; means or format of a failure notification are left up to implementers. The OITF MAY ask the user if the Widget
should be installed even if the validation failed or if the signature is missing. If the user accept launching the Widget, it
SHALL be run without access to privileged API.

Page 312 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex A. Void

Page 313 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex B. CE-HTML Profiling
This section defines a detailed set of deviations from the CEA-2014-A i-Box and 2-Box model [CEA-2014-A], in
particular for those changes that are directly related to requirements in sections 5.1 through 5.10 and Annexes A through
I of [CEA-2014-A]. Changes to requirements of CEA-2014-A are indicated by underlined text for text that must be added,
and by strikethrough text for text that must be removed.

B.1 Changes to Section 5.2
Several new elements and new attribute/values have been added for the capability descriptions. Most of these are related
to new functionality, and are defined in Section 9.3 and hence are not listed here. With respect to existing elements and
attributes, the following changes apply:

• an additional value “0.33x0.33” for attribute “scaling” of the <video_profile> element in bullet w) of [Req. 5.2.1.a],
with the following related extension to the schema for type “scalingType”

<xs:enumeration value="0.33x0.33"/>

• the “name”-attribute of the <audio_profile> and <video_profile> elements in CEA-2014-A are restricted to DLNA
media format profiles. The forum has specified its own audio and video format profile names that can be used by the
“name” attribute as well.

• new UI profiles have been defined for [Req. 5.2.1.b] that a client may choose to implement. Details are not included
in this annex.

• for both <video_profile>, and <audio_profile> elements, it is allowed to include multiple profile names
corresponding to the same MIME type, by separating each profile name with a whitespace character.

• element <pointer> requires some clarifications:

m) <pointer> - indicates whether or not the Remote UI Client supports pointer-based input, such as mouse or touch.
If included, the value of this element SHALL be: (true|false). A value of ‘true’ means that all mouse event types as
defined in DOM level 2 Events SHALL be supported, and that server-side image maps SHALL be fully supported as
defined in Section 13.6.2 of [HTML401] . Note that a value of ‘false’ still implies that ‘click’ events SHALL be
supported, as per Req 5.4.1.s below.

B.2 Changes to Section 5.3
• Req. 5.3.a (5) states that if the Content-Encoding header is used, it SHALL always have case-insensitive value

“identity”, unless a client/server has explicitly indicated support for other content encodings by using an Accept-
Encoding header. RFC 2616 (section 3.5) states that this content-coding is used only in the Accept-Encoding header,
and SHOULD NOT be used in the Content-Encoding header. We follow RFC 2616 and use the following alternative
definition for Req. 5.3.a: “if this header is used, it SHALL always have a value that matches one of the content
encodings as sent by an Accept-Encoding header, and SHALL adhere to Section 3.5 of RFC 2616 regarding the use
of “identity” encoding”.

• Req 5.3.a (12) which states the requirements for the User-Agent header is replaced by the description in Section 8.1.

• Req 5.3.i, which limits the generated HTTP header line size to 998 bytes SHALL NOT be supported.

B.3 Changes to Section 5.4
• Since the CSS3 “image-orientation” property was defined in CSS Print/Paged Media, browsers may have difficulty

implementing it for normal web pages. It is therefore made OPTIONAL. Services needing image rotation SHOULD
do this at the server before sending it to the client.

• The W3C CSS working group made an official statement that the following DOM2 level Style features are
considered to be problematic and have therefore been classified as obsolete.

o The UnknownRule interface (unknown rules should be dropped by the parser and thus never reach the DOM).
o The getPropertyCSSValue method, CSSValue interface, all interfaces inheriting from CSSValue, and the

RGBColor, Rect, and Counter interfaces (the CSSValue interface is thought to be too awkward for frequent

Page 314 (356)

 Copyright 2010 © Open IPTV Forum e.V.

use).

These features are OPTIONAL.

• In addition, the DocumentCSS and DOMImplementationCSS interfaces of DOM level 2 Style are also OPTIONAL.

• Compatibility with CEA-2027-A is not a requirement for the present document. Therefore, a client MAY omit the
list of methods of the Window scripting object as listed by bullet 3) and the alias as defined by bullet 5) of
requirement [Req. 5.4.2.a] of CEA-2014-A.

• The following methods SHALL be added to the list of supported properties and methods on the Window scripting
object:

o Window self: reference to the current window (returns same value as property “window”).
o Window window: circular reference to window object (returns same value as property “self”).
o Number setInterval(Function f, Number d) – call function f again after d number of seconds.
o void clearInterval(Number i) – cancels the given interval timeout that has been set using “setInterval”.
o void addEventListener(String t, EventListener l, Boolean capture) – allows DOM 2 event listener

registration on the Window object.
o void removeEventListener(String t, EventListener l, Boolean capture) – allows DOM 2 event listener de-

registration on the Window object.
o void blur() – removes focus from current window. Calling this method on the Window object of a DAE

application SHALL not deactivate the application.
o void postMessage(String message, String targetOrigin) – used for cross-document messaging as defined by

bullet 10 below.
o OipfObjectFactory oipfObjectFactory – The global factory object which can be used to instantiate embedded

object instead of using HTML <object> tags. See 7.1 for the definition of the OipfObjectFactory class.
o void close() – closes the current window. Calling this method on the Window object of a DAE application

SHALL be equivalent to calling method destroyApplication() of the DAE application (as defined in Section
7.2.2.2).

o Navigator navigator – this property MAY return a Navigator object representing the OITF as defined in Section
7.15.4.

• A client MAY omit window.download() as defined in requirement [Req. 5.4.2.a] of CEA-2014-A. Applications
SHOULD use registerDownloadURL as defined in Section 7.4.1 of this document.

• HTML5 cross-document messaging SHALL be supported as follows:

10) Cross-document messaging, as defined in section 8.2 of [HTML5], a subset. The client SHALL support
posting messages with the postMessage method as defined in Section 8.2.3 of [HTML5], prototype also
listed below for reference. The MessageEvent interface defined in 8.1 of [HTML5] SHALL be
supported, except for the ports value which MAY be undefined if the client does not support passing
messages with ports.

o void postMessage(any message, String targetOrigin)

• The HTML5 media elements SHALL be supported as follows::

11) Sections 4.8.7, 4.8.8, 4.8.9 and 4.8.10 of [HTML5] SHALL be supported. Those sections cover the
<source>, <audio> and <video> element, as well as the associated interfaces and processes. Only the
XHTML syntax of said markup SHALL be supported. Support for this feature SHALL be indicated
through the OITF’s capability description by using element <html5_media> as defined in Section 9.3.16.

• Add keypress events to Requirement 5.4.1.a in the following way:

[Req. 5.4.1.a] Every Remote UI Client SHALL support the DOM event types "keydown", "keypress" and "keyup"
and the following subset of the KeyEvent interface as specified in [18], which SHALL inherit from the UIEvent
interface:

1) Properties:

• readonly Boolean shiftKey;

• readonly Number keyCode;

Page 315 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• readonly Number charCode;

2) Methods:

• initKeyEvent(DOMString eventType, Boolean canBubble, Boolean cancelable, Boolean ctrlKey,
Boolean altKey, Boolean shiftKey, Boolean metaKey, Number keyCode, Number charCode), where:

• argument eventType is either “keydown”, “keypress” or “keyup”,

and

• arguments ctrlKey, altKey and metaKey MAY be ignored.

3) Constants:

• A subset of the VK_* constants as specified in Annex F, corresponding to the keys that are supported
by the Remote UI Client (i.e. SHALL at least include the keys as specified by the client in the
capability profile).

For “keydown” and “keyup” events, the key code as specified in Annex F that corresponds to the key that has been
pressed SHALL be included in property keyCode.

For “keypress” events, if pressing a key (or sequence of keys) has resulted in generating a Unicode character, the
resulting Unicode character code SHALL be included in property charCode. If no Unicode characters results from
pressing the key (or sequence of keys), for example for the arrow keys, the key code as specified in Annex F SHALL
be included in property keyCode.

Note: DOM “keypress” events are not supported.

• Add keypress events to Requirement 5.4.1.l:

[Req. 5.4.1.l] A Remote UI Client SHALL generate one or more “keydown” and “keypress” events while a key is
being pressed until the key is released, at a repetition rate determined by the client, and SHALL generate a “keyup”
event as soon as the key is released.

o Next to the “onkeydown” and “onkeyup” events, also add intrinsic event “onkeypress” to requirement [Req.
5.4.2.a] of CEA-2014-A:

 x) String onkeypress – read-write property that specifies the script to be called when a “keypress” event (as
specified in Section 5.4.1) occurs on the window/frame that corresponds to this “window”-object.

o Note: future revisions of CEA-2014-A or the DAE specification should consider the ability to specify a
particular (maximum/minimum) size of textual or graphical labels to be inserted.

• Requirement 5.4.a.3.a SHALL be changed as follows;

a) DOM level 2 Core [11], including the extended XML interfaces (except for Notation, Entity, EntityReference and
Processing Instruction), i.e. method hasFeature(DOMString feature, DOMString version) of the
DOMImplementation interface returns true for features “Core” and “XML”, and version “2.0”.

• Requirement 5.4.a.3.c SHALL be extended with the following;

Focus events (i.e. events of type “focus”) SHALL be generated not only for <label>, <input>, <select>, <textarea>,
and <button> as specified in Section 1.6.5 of [DOM 2 Events], but also at least for <a> elements, in accordance with
[DOM 3 Events].

For all elements which can receive focus events, a focus event SHALL be generated and the CSS “:focus” selector
must be activated, irrespective if the focus is received through keyboard interaction, pointer interaction, calling an
DOM focus() method through Javascript, or any other mechanism by which the focus can be changed.

• Requirement 5.4.a.3.d SHALL be changed as follows;

d) DOM level 2 HTML [14] except following interfaces:

 • HTMLAppletElement,

 • HTMLFrameElement,

Page 316 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 • HTMLFrameSetElement

The method hasFeature(DOMString feature, DOMString version) of the DOMImplementation interface returns true
for features “HTML” and “XHTML”, and version “2.0”.

• Requirement 5.4.a.3.e SHALL be replaced as follows;

e) To distinguish between the subset as defined here for CE-HTML and full support for the DOM level 2 HTML
module, the following applies:

• hasFeature(“CE-HTML”, “1.0”) SHALL return true if the subset of the DOM 2 HTML module is supported as
defined above.

• hasFeature(“HTML”, “2.0”) and hasFeature("XHTML", "2.0") SHALL return true if the full DOM Level 2
HTML module is supported.

e) DOM level 2 Views [DOM 2 Views] with the method hasFeature(DOMString feature, DOMString version) of the
DOMImplementation interface returning true for feature “Views” and version “2.0”.

f) The method hasFeature(DOMString feature, DOMString version) of the DOMImplementation interface SHALL
return true for feature “CE-HTML” and version “1.0”.

• Requirement 5.4.a.6.b SHALL be replaced as follows;

b) If both attributes are defined and not the same, then the value defined by attribute “id” SHALL take preference.

b) Application authors SHOULD define both “id” and “name” on <a>, <form>, <iframe>, and <map>
elements as described in Section C.8 of [XHTML 1.0].

• Requirement 5.4.a.7 shall be extended with the following;

o nav-up, nav-down, nav-left, nav-right as defined in Section 10.2.2 of [CSS3 UI].
o outline and outline-* as defined in [Req. 5.4.1.q]
o letter-spacing and word-spacing CSS2.1 [28] properties.
o border-top-right-radius , border-bottom-right-radius , border-bottom-left-radius , border-top-left-radius

and border-radius as defined in [CSS3 BG] with the following restrictions:

� Only solid style is guaranteed to work in correlation with border radius: When border radius is used, non-
solid border style may be ignored by an implementation and solid style be used instead.

� If two borders are connected with a rounded corner, and those two borders have different computed colors,
the OITF MAY draw both borders with the computed color of one of those two borders.

� An implement may not trim a background image attached to the container box (or other elements contained
in the container) at the outside of the rounded border. Only the background color of the container is
guaranteed to be clipped to the rounded border by an implementation.

Note that a full implementation of the border radius properties as defined in [CSS3 BG] is compliant with the
subset defined above.

The following corresponding DOM style properties (properties of the CSS2Properties interface) shall also be
supported: borderTopRightRadius, borderBottomRightRadius, borderBottomLeftRadius,
borderTopLeftRadius, borderRadius.

• Requirement 5.4.1.f SHALL be changed as follows:

If the input-focus is on any forms element except a button, a Remote UI Client SHALL not generate any VK_UP,
VK_DOWN, VK_LEFT, and VK_RIGHT key-events, except at those points in time that the focus is about to move
away from the form element (e.g. if VK_LEFT is pressed while the cursor is placed at the beginning of a text-entry),
to allow an author of a HTML document to override the default focus navigation.

o The client SHOULD use the same physical keys for generating the VK_UP, VK_DOWN, VK_LEFT and
VK_RIGHT key events that are used for a spatial navigation mechanism provided by the client. The same keys
SHOULD also be used for spatial navigation specified through the CSS properties ‘nav-up’, ‘nav-down’, ‘nav-
left’ and ‘nav-right’.

o In accordance with this requirement, the focus navigation as defined through CSS properties ‘nav-up’, ‘nav-

Page 317 (356)

 Copyright 2010 © Open IPTV Forum e.V.

down’, ‘nav-left’ and ‘nav-right’ SHOULD only be active at those points in time when focus can be moved away
from the form-element, to not interfere with the implementation specific handling of keys inside a form-element.

• Requirement 5.4.1.m SHALL be changed as follows:

A Remote UI Client SHALL offer a means to set focus to the following elements in a HTML document by using
key-based input: <a>, <area>, all form elements, <iframe>, and <object> elements of type “video” as defined in
Section 5.7.

o Upon receiving focus, the Remote UI Client SHALL generate both a DOM 2 “focus” and a “DOMFocusIn”
event for <a>, <area>, and both a DOM 2 “focus” and “DOMFocusIn” event for all form elements, for any
registered event listeners.

o The Remote UI Client MAY not generate DOM 2 focus and DOMFocusIn events in the following two cases.
For <iframe> elements, and <object> elements of type “video” the Remote UI Client SHALL call the event
listener that has been specified through the onfocus attribute of the “window” object (see Section 5.4.2) that is
associated with the iframe. For <object> elements of type “video”, it SHALL call the event listener specified
through the onfocus attribute of the A/V scripting object (Section 5.7). The Remote UI Client MAY not generate
a DOM 2 focus events in those cases.

• Add a requirement 5.4.1.p that reads as follows:

[Req. 5.4.1.p] A Remote UI Server SHOULD use the CSS properties ‘nav-up’, ‘nav-down’, ‘nav-left’ and ‘nav-
right’ to override the default spatial navigation as provided by the Remote UI client, instead of defining a spatial
navigation mechanism in Javascript.

• Add a requirement 5.4.1.q that reads as follows:

[Req. 5.4.1.q] If a Remote UI Server has specified the “outline-style” attribute to be unequal to “auto” (as defined in
Section 8.3 of the CSS3 Basic User Interface Module), for an element that has input focus, the Remote UI Client
SHALL not draw its own focus highlight around this item, but use the focus highlight style, color and width as
defined by the values given to the “outline” and/or “outline-*” attributes.

• Add a requirement 5.4.1.r that reads as follows:

[Req. 5.4.1.r] A Remote UI Client SHALL generate the focus events as specified by [Req. 5.4.1.m] and SHALL
activate the CSS “:focus” selector, for any element which can receive focus events, irrespective if the focus is
received through keyboard interaction, pointer interaction, calling an DOM focus() method through Javascript, or
any other mechanism by which the focus can be changed.

• Add a requirement 5.4.1.s as an extension to 5.4.1.m and 5.4.1.n

[Req. 5.4.1.s] A Remote UI Client SHALL offer a means to activate the following elements in a HTML document
by using key-based input: <a>, <area> <button>, <input type=”submit”>, <input type=”reset”> and <input
type=”button”>, <input type=”radio”>, and <select>.

The Remote UI Client SHOULD allow the same physical key that is used to generate a VK_ENTER key event to be
used to activate these elements if these elements have input focus. If an access key has been defined the Remote UI
Client SHALL allow the access key to be used to activate these element.

Upon activation, the Remote UI Client SHALL generate both a DOM 2 “DOMActivate” and a “click” event for
above listed elements

B.4 Changes to Section 5.6.2
Support for this section SHALL be optional for an OITF. Support for section 5.6.2 SHALL be indicated through the
OITF’s capability description by using element <pollingNotifications> as defined in Section 9.3.14.

• Extend requirement 5.6.2.a as follows

[Req. 5.6.2.a] An i-Box Remote UI Client SHALL support polling-based 3rd-party notifications from an i-Box
server.

1) To manage the polling process for a particular notification, an i-Box Remote UI Client SHALL support the
following method of the Window/UIContentFrame object:
a) Boolean subscribeToNotifications(String url, String name, Number period, String type) where

Page 318 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• url is the complete URL of the HTTP GET request made by the Remote UI Client every period
seconds; the domain of url SHALL equal the domain of the current document in the CE-HTML
browser window, and use SSL or TLS security[24][9][10]; if it doesn’t, this method has no effect and
returns false. If url equals the URL of any existing notification subscription and the value of period is
positive, the name and period of that notification subscription is updated.

• name is the user friendly name of the notification service.
• period is the polling period of this subscription in seconds. If the value of period equals 0, any existing

notification subscription with exactly the same URL is cancelled, and the return value indicates the
former existence of such a subscription. If the value of period is negative, no changes are made and the
return value indicates whether a subscription to the given URL already exists. If the value of period is
positive, true is returned only if the Remote UI Client subscribes, or updates an existing subscription.

• type is the highest priority event type that will be sent by the notification service, and SHALL be one of
the event types listed in bullet 10 of [Req 5.6.1.a], without the “upnp:”-prefix.

b) On executing the subscribeToNotifications method to subscribe to a new notification, the Remote UI
Client SHALL alert the user to the impending new notification subscription (including information about
the highest priority notification type that will be sent by the Remote UI Server), and provide the user with
at least two options:
• subscribe to this notification, and
• do not subscribe to this notification.

This does not exclude an option that allows a user to always accept notifications from the same URL.

c) If the Remote UI Client does not subscribe because the user declined, the subscribeToNotifications
method SHALL return false.

2) To manage the polling process for a particular notification, an i-Box Remote UI Client SHALL support the
following method of the Window/UIContentFrame object:
a) Number subscribeToNotificationsAsync(String url, String name, Number period, String type) where

• url is the complete URL of the HTTP GET request made by the Remote UI Client every period
seconds. url SHALL have the same origin as the current document in the CE-HTML browser window,
and use SSL or TLS security [24][9][10]; if it doesn’t, this method has no effect and an event indicating
a negative response is dispatched. If url equals the URL of any existing notification subscription and
the value of period is positive, the name and period of that notification subscription is updated.

• name is the user friendly name of the notification service.
• period is the polling period of this subscription in seconds. The value of period SHALL be greater than

zero.
• type is the highest priority event type that will be sent by the notification service, and SHALL be one of

the event types listed in bullet 9 of [Req 5.6.1.a], without the “upnp:”-prefix.
• The return value of his method indicated the ID of the subscription request. This is used when notifying

the application of the result of this call, to link a response to the request that generated it.
b) On executing the subscribeToNotificationsAsync method to subscribe to a new notification, the Remote

UI Client SHALL asynchronously alert the user to the impending new notification subscription (including
information about the highest priority notification type that will be sent by the Remote UI Server), and
provide the user with at least two options:
• subscribe to this notification, and
• do not subscribe to this notification.

This does not exclude an option that allows a user to always accept notifications from the same URL.

Calls to subscribeToNotificationsAsync return immediately. The application will be notified via the
onNotificationSubscriptionResponse function (or corresponding DOM-2 event) user has chosen to
subscribe or to not subscribe to the notification.

If two calls to subscribeToNotificationsAsync with the same value for url overlap (i.e. the notification
event of the first call has not yet been dispatched), the Remote UI Client SHALL interrupt the first call and
generate a response event as if the request had been declined.

3) An i-Box Remote UI Client SHALL support the following property of the Window/UIContentFrame object:
c) script onNotificationSubscriptionResponse

where the specified function is called with arguments id and response, which are defined as follows:

Page 319 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• Number id – the ID of the subscription request, as indicated by the return value of the
subscribeToNotificationsAsync method.

• Boolean response – the response indicating whether the subscription request has been accepted. A
value of false indicates that the request has been declined. A value of true indicates that the request has
been accepted.

4) An i-Box Remote UI Client SHALL support the following method of the Window/UIContentFrame object:
d) void unsubscribe(string url, string name)

where

• url is the URL used to subscribe to a notification, which SHALL have the same origin as the current
document in the CE-HTML browser window

• name is the user friendly name of the notification service.
e) On executing the unsubscribe method, the Remote UI Client SHALL unsubscribe from the specified

notification service. If the application is not subscribed to the specified notification service or if the page
currently loaded in the CE-HTML browser window is not from the same origin as url, this method SHALL
have no effect. When this method returns, the application shall no longer be subscribed to the notification
service.

5) An i-Box Remote UI Client SHALL support the following method of the Window/UIContentFrame object:
f) StringCollection listNotificationSubscriptions()

where the return value of this method SHALL be a collection of URLs of notification services to which
HTML documents from the same origin are currently subscribed.

6) An i-Box Remote UI Client SHALL support the following method of the Window/UIContentFrame object:
g) Boolean isSubscribed(string url, string name)

where

• url is the URL used to subscribe to a notification, which SHALL have the same origin as the current
document in the CE-HTML browser window

• name is the user friendly name of the notification service.
• The return value of this method SHALL be true if url has the same origin as the current application and

application is currently subscribed to the specified notification service, or false otherwise.

B.5 Changes to Section 5.7
In addition to the A/V Control object extensions in Section 7.14, the following detailed modifications to Requirement
5.7.1.f SHALL apply.

• Requirement 5.7.1.f SHALL be modified as follows;

[Req. 5.7.1.f] The following properties and methods SHALL be supported for audio objects and for video objects.
Support for playlists and support for the “persist” attribute is OPTIONAL.

• Requirement 5.7.1.f bullet 1) ‘data’ SHALL be modified as follows;

2) String data [RW] – media URL. If the value of data is changed while media is playing playback is stopped
(resulting in a play state change). The default value is the empty string. If the value of this attribute is changed,
the related data-attribute inside the DOM tree SHOULD be changed accordingly. If the value of this attribute is
set to an empty string or is changed, the resources (files, server connections, etc…) currently owned by the
object SHALL be released.

• Requirement 5.7.1.f bullet 2) ‘playPosition’ SHALL be modified as follows;

3) Number playPosition [R] - the play position in number of milliseconds since the beginning as denoted by the
server (i.e. in relation to NPT 0.0 as described in Section 3.6 of RFC 2326) of the media referenced by attribute
data when data refers to a single media item. playPosition is the duration of the currently playing media item of
a playlist if data refers to a playlist. The behaviour of the A/V Control object when the end of media (or the end
of the currently-available media) is reached is defined in section 7.14.1 of the DAE specification. If the play
position cannot be determined, the playPosition SHALL be undefined.

• Requirement 5.7.1.f bullet 3) ‘playTime’ SHALL be modified as follows;

Page 320 (356)

 Copyright 2010 © Open IPTV Forum e.V.

3) Number playTime [R] - the estimated total duration in milliseconds of the media referenced by data when data
refers to a single media item. playTime is the duration of the currently playing media item of a playlist if data
refers to a playlist. If the duration of the media cannot be determined, the playTime SHALL be undefined.

• Requirement 5.7.1.f bullet 4) ‘playState’ SHOULD be clarified as follows to fit the state diagram as specified in
Section 7.14.1;

4) Number playState [R] - indication of the current play state as follows:

0 - stopped; user (or script) has stopped playback of the current media, or playback has not yet started.

1 - playing; the current media pointed to by data is currently playing.

2 - paused; the current media pointed to by data has been paused.

3 - connecting; connect to media server, i.e. waiting for connection to media server to be established, upon
first connection or after the connection was lost. In addition, DRM rights necessary for playback of
protected content are also retrieved during this state.

4 - buffering; the media is being buffered before playback. the buffer is being filled in order to have
sufficient data available to initiate or continue playback. In this state, playback is stalled due to
insufficient data in the buffer to continue playback. The player waits until sufficient data has been
buffered to continue playback. For video objects, whilst being in this state, the player SHOULD show
the last completed video frame that was shown before entering this state. This playstate is an
intermediate state to reach playState 1 (‘playing’). The OITF SHOULD buffer the content in the
background whilst in playState 2 (‘paused’). However, this background buffering does not result into a
state change to state 4.

5 - finished; the playback of the current media has reached the end of the media.

6 - error; an error occurred during media playback, preventing the current media to start/continue playing.

• Requirement 5.7.1.f bullet 5) ‘error’ SHALL be modified as follows;

5) Number error [R] - error details; only significant if the value of playState equals 6:

0 - A/V format not supported.

1 - cannot connect to server or connection lost.

2 - unidentified error.

3 - insufficient resources.

4 - content corrupt or invalid.

5 - content not available.

6 - content not available at given position.

• Requirement 5.7.1.f bullet 11) ‘play’ SHALL be modified as follows;

11) Boolean play(Number speed) - plays the media referenced by data, starting at the current play position
denoted by playPosition, at a relative speed equal to the value of attribute speed. Negative speeds reverse
playback. If no speed is specified, it defaults to 1. A speed of 0 will pause playback. If the current media can
be played at the specified speed, true is returned. Otherwise, false is returned and neither the play state nor the
speed is not changed. If the playback reached the beginning of the media at rewind playback speed, then the
play state is changed to 2 (‘paused’). A play speed event (see section 7.14.4.2 of the DAE specification) will
be generated when the operation has completed, regardless of the success of the operation. If the operation
fails, the argument of the event SHALL be set to the previous play speed.

• Requirement 5.7.1.f bullet 13) ‘seek’ SHALL be modified as follows;

13) Boolean seek(Number pos) – if seek() is called while the player is in state 1 (“playing”, then it sets the current
play position (in milliseconds) to the value of pos and MAY change play state to 4 (‘buffering’). If the player

Page 321 (356)

 Copyright 2010 © Open IPTV Forum e.V.

is in state 2 (‘paused’) then the seek() method seeks to the new position, but the play state and the rendered
image is not changed. . If the new playback position is valid, the value of the playPosition attribute SHALL be
set to the new value before this method returns. Does not affect the play state. Returns true if the method
succeeded, and false otherwise. A play position event (see section 7.14.4.2 of the DAE specification) will be
generated when the operation has completed, regardless of the success of the operation. If the operation fails,
the argument of the event SHALL be set to the previous play position.

• Requirement 5.7.1.i SHALL be modified as follows;

[Req. 5.7.1.i] If a video object has input focus:

� The Remote UI Client SHALL at least generate DOM Level 2 key events (as specified in Section 5.4.1) for
the navigation keys: VK_UP, VK_DOWN, VK_LEFT and VK_RIGHT; for the VK_OK key; and for the
transport keys: VK_PLAY, VK_PAUSE, VK_PLAY_PAUSE, VK_STOP, VK_PREV, VK_NEXT,
VK_FAST_FWD and VK_REWIND.

� The means required by [Req. 5.2.2.h] to go back to the previous UI state (e.g. by pressing a “back”-button),
SHALL be included as a means to go from full-screen to windowed mode. Furthermore, note that [Req.
5.4.1.m], [Req. 5.4.1.n] and [Req. 5.4.1.o] apply w.r.t. handling focus, in order to navigate focus to and away
from a video object (in addition to the use of scripting methods).

� The Remote UI Client SHALL not block execution of scripts of the CE-HTML page from which the focus
was moved to the video object, even when the video is playing full-screen and has input focus. However, the
Remote UI Client MAY block execution of scripts if the CE-HTML page was explicitly closed by the user.

� The Remote UI Client SHALL have some appropriate keys to control video playback, which SHALL at least
include a key to start and stop playing.

� The Remote UI Client MAY use the VK_OK key and/or the transport keys VK_PLAY, VK_PAUSE,
VK_STOP, VK_NEXT, and VK_PREV for controlling video playback. However, the Remote UI Client
SHOULD not use the keys listed under the first bullet of [Req. 5.7.1.i], and SHOULD not generate DOM
Level 2 key events for those keys that the client uses for A/V control, to prevent Javascript to define possibly
conflicting actions.

� The Remote UI Client SHALL NOT handle the VK_OK, VK_PLAY, VK_PAUSE, VK_PLAY_PAUSE,
VK_STOP, VK_FAST_FWD, VK_REWIND, VK_NEXT or VK_PREV keys and no action shall be taken
by the Remote UI Client when these keys have been requested by an application.

B.6 Changes to the Annexes
• In Annex C, the default value for the transport attribute of the audioProfileType and videoProfileType and for the

“protocolNames” attribute of the downloadType is defined as “http”. In Annex F.1 of [OIPF_PROT2] the equivalent
protocol name is called “http-get”. OITFs and DAE applications SHALL consider the default to be “http-get”.

• In Annex F, the following key code is defined for the remote control key that allows to toggle between PLAY and
PAUSE states:

const Number VK_PLAY_PAUSE = 463;

• In Annex G, the “onkeypress” events in the abbreviation section in the introduction is currently marked with a
dashed blue color. This marking must be removed.

o The following clarifications apply to inline (i.e. intrinsic) event registration using the on* attributes in
(X)HTML:

� If value event is used inside the script inside the on* attribute, for example as an argument to one or more
functions inside the on* attribute, the associated event is in scope for the evaluation by the script once the
event occurs. For example, in the following snippet, the event is passed as a parameter to function callMe,
and the default action to follow the link is prevented:

<a href="http://www.google.com" id="clickme" onclick="callMe(event);
event.preventDefault();">Click me

Page 322 (356)

 Copyright 2010 © Open IPTV Forum e.V.

� If the event registration inside the on* attribute returns false, the default action for activating the (X)HTML
element is prevented from occuring. For example, in the following snippet, the function callMe is called,
after which the default action to follow the link is prevented:

• In Annex H, as per the change to Section 5.4, the “image-orientation” CSS property is not supported.

o The following clarification applies for the “font” CSS property: “Support for system font values (caption, icon,
menu, message-box, small-caption, status-bar) is not required.”

• In Annex I:, the “onkeypress” intrinsic event handler must be added to the “window” interface. And attribute
“charCode” must be added to the “KeyEvent” interface.

o The additional implementation note for EventListener does not apply, and method handleEvent must be
supported as defined in DOM 2 Events.

o The following clarification apply to DOM 2 Events handling:

a) The “this” keyword inside the event handler always refers to the object on which the event handler was
registered (i.e. the HTML element that is currently handling the event). For example the following snippet

my_element.addEventListener('click',doSomething,false);
function doSomething() {
 this.style.backgroundColor = '#cc0000';
}

will cause the element “my_element” to get a red background whenever the user clicks on it.

o Full support for “DOM Level 2 HTML” specification is added except for the following interfaces:
“HTMLAppletElement”, “HTMLFrameElement” and “HTMLFrameSetElement”.

o Full support for “DOM Level 2 View” specification is added by supporting the “DocumentView” interface
(implemented by the document object) and its “defaultView” attribute.

Page 323 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex C. Design Rationale (Informative)

C.1 The application model
As specified in section 4.3.2, applications are recorded within a hierarchy of applications. This hierarchy has a number of
benefits for an environment where multiple applications may be executing simultaneously, including:

• Clear separation of applications so that permissions granted to one application cannot be exploited by another.

• Simpler event dispatch, whether for key events or externally triggered events such as parental control changes, caller
ID integration, IM chat messaging, etc.

• The ability to deploy new applications without affecting other applications (either UI or structure).

• The ability for service providers to manage groups of applications, including invisible applications.

Each object representing an application possesses an interface that provides access to methods and attributes that are
uniquely available to applications. For example, the facilities to create and destroy applications are accessed through such
methods.

Development and maintenance efficiencies are gained through distinct application boundaries. Code reuse is offered
through the application tree, permitting applications to export facilities as desired (for example, channel change logic
may be embedded in the “zapper” application and exported to an EPG application). The paired advantages of
compartmentalisation and code re-use are of increasing value as the number of authoring entities and applications grows
– what is of marginal additional value for one authoring entity and three applications is of significant value for 10
authoring entities and 50 applications.

Page 324 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex D. Clarification of Download CoD, streaming CoD and
CSP interfaces (Informative)

D.1 Introduction
There are many different usage models and scenarios that one can think of when dealing with protected content and the
interactions the user or the device may have with a service provider. This includes usage models regarding user
registration, domain management, license acquisition, downloading content, etc. This informative Annex aims to clarify
the usage of the interfaces as specified in Sections 4.6, 4.7, 7.4 and 7.6. in the context of these interactions. However, this
Annex will only show some of the generic mechanisms as offered by these interfaces, not only the browser interfaces, but
also including some of the local interfaces on the device (that actually do not need to be standardized) In the figure
below these are indicated by dotted lines.

The main scenario that we envision is the following:

License server Content server

OITF

IPTV Application
(e.g. CoD store)

DAE

Download

manager

b0)

d1)

c1)

Notification

handler
c3)

d4)

d3)

c2)

a)

e2)

payments

d0) d5)

A/V

streaming

plug-in

UNIS-6 UNIS-6 UNIS-6 UNIS-CSP-T

UNIS-11(RTSP)

UNIT-17(RTP/HTTP)

UNIS-13(IGMP)

UNIS-8(SIP)

CSP-T CDN

DAE application

DRM

plug-in

Download

Trigger
plug-in/

handler

d2)

b1)

f)

A/V Player

e0)

e1)

Metadata

CG client

OITF

embedded

app

IPTV

metadata

control

UNIS-7

g1)

g2)

g3)

Metadata

plugin

g4)

CSP

DRM Agent

Figure 18: Main scenario

The OITF shows the UI of the CoD store. With this UI the user is able to interact with the CoD store to do things, such as
user registration, browsing the content offered by the CoD store, and purchase a license.

This can be done inside the browser using a standard CE-HTML interface. In the figure above, this is identified by
a).

In those deployments where the OITF supports the metadata CG client, an embedded application or a DAE
application can make use of metadata provided through a metadata CG client. This is identified by g*).

Page 325 (356)

 Copyright 2010 © Open IPTV Forum e.V.

After purchasing/selection of the content the selected content needs to be fetched. To this end, the download manager or
the A/V embedded object needs to be triggered with information on how to fetch the content. This is done by using a
special descriptor, with an easily identifiable MIME type
“application/vnd.oipf.ContentAccessDownload+xml” in case of download, and
“application/vnd.oipf.ContentAccessStreaming+xml” in case of streaming. This is indicated by interfaces
d0, d1, d2, e0, e1), and e2).

For certain steps in these interactions, the CoD store may need to interact with the DRM agent. This can be done by
talking directly to the DRM agent during a browser session using interfaces b0) and b1). Alternatively, the
<DRMControlInformation> element of the content access descriptor can be used to convey DRM specific messages
to the DRM agent. This is indicated by interface d3).

Note that both the DRM agent and Download manager are autonomous components that will be actively performing
their duties, irrespective whether there is an active browser session or not. They will have their own interaction with
e.g. the license server and download server, and possibly with the user. These interactions are identified by interfaces
c1, c2, d4, d5.

The download manager or A/V player fetch the content, as indicated by interfaces d4 and e3.

Once the content is fetched, playback can be started in the A/V player. When the stream is protected, the A/V player will
have to get a license from the DRM agent using interface f).

D.2 List of interfaces
Interface a: browse, select and purchase content from CoD store

This interface is used to interact with the CoD store for operations such as user registration, browsing the content
offered by the CoD store, and purchase a license. This is a standard CE-HTML/HTTP interface.

Interface b*: In-session interaction from web page with underlying DRM agent

Interface b1 (and the related interface b2) is the application/oipfDrmAgent Javascript embedded object interface as
defined in Section 7.3. This interface will allow messages to be exchanged between pages from the CoD store and
the underlying DRM agent, whilst the user is having a user interface session with the CoD store. Examples of these
messages are Marlin Action tokens. This is useful to enable scenarios, such as subscription license acquisition,
registration, domain management, etc.

The interface basically consists of one method: sendDRMMessage(String msgType, String msg), which
is very generic in the sense that any kind of message can be exchanged. The exact payload and types of messages
that could be exchanged is defined in the [OIPF_CSP2]. An example of such message could be:

pluginElement = document.getElementByID(“drmplugin”);
pluginElement.sendDRMMessage(“application/vnd.marlin.drm.actiontoken+xml”,
 “<marlin>…</marlin>”);
…
<object id=”drmplugin” type=”application/oipfDrmAgent”/>

Note that this API is designed to be asynchronous in nature, because certain interactions may take a undeterminate
amount of time. Therefore, it is not wise to make the method synchronous, since that could block the Javascript
engine. To this end we have defined an event handler: onDRMMessageResult, to register a callback function that
will be called when the DRM agent completed handling of the message. For example:

function callbackF(String msgID, String resultMsg) {
 …
}
document.getElementByID(“drmplugin”).onDRMMessageResult = callbackF;

An equivalent DOM2 event is also generated.

Content authors SHOULD be aware of the asynchronous nature of the API. Only after having received the callback
message, the web page can assume that the DRM agent has handled the DRM message. The service author may need
to define some visual cues to the user if he would like the user to wait for certain actions to finish.

Interface c*: Autonomous out-of-session interaction between DRM agent and CoD store

Interface c1) is the collection of interfaces between the DRM agent, the CoD store, the license server, etc. as defined
in the [OIPF_CSP2]. The interaction is typically done outside the scope of the browser, and also without the user

Page 326 (356)

 Copyright 2010 © Open IPTV Forum e.V.

being involved. In the few cases where the user would be involved, the device will typically have its own “local”
user interface to handle the interaction with the user. In some of these the DRM agent would need to open a web
page to the originating CoD store, so that the user could resolve the issue directly with the store (e.g. using the rights
URL extracted from the MPEG2_TS). Since the user could be doing other things at that moment, it may not be
appropriate to popup/replace the current browser session without the user consent. Therefore, the DRM agent could
issue a notification event that will get listed along similar lines to a third-party notification event. The user would be
notified that his attention is required with respect to the DRM agent, and can then decide to take action and launch
the browser.

In the figure above, these UI interactions are identified by interface c2) and c3). These interfaces however are
typically local inside the OITF, and are not specified in more detail.

Interface d*: Downloading content

These interfaces are used for downloading content. In order to trigger the download, a special content-access
descriptor (the Content Access Download Descriptor) with an easily identifiable MIME type
“application/vnd.oipf.ContentAccessDownload+xml” is used. This descriptor contains all the relevant
data related to fetch the content. This content-access descriptor is typically provided by the CoD store. A browser
application can fetch this descriptor in various different ways, e.g. by following a link or through an
XMLHttpRequest. This is identified by interface d0. The Content Access Download Descriptor and MIME type are
defined in Annex E. It contains elements, such as <ContentURL> which indicates where the content item can be
fetched, and <MetadataURL> to indicate where additional metadata, such as genre, subtitles, artwork, etc. can be
retrieved from.

Interface d1) (and related interface d2) are used to trigger/register the download with the download manager. This is
done by handing over the Content Access Download Descriptor to the download manager by calling method
registerDownload() on the application/oipfDownloadTrigger embedded object after retrieving the
content-access descriptor e.g. through XMLHttpRequest. Once the download is registered, the download manager
will take care that the content is downloaded. Since this may be a lengthy task, the download manager is an
independent process from the browser, that will perform its duty in the background even if the browser is closed. By
making the download manager an independent process of the browser, the user can in the meantime do other things.

Interface d3) is a local interface that is used to pass optional DRM messages carried in the content-access descriptor
from the Download manager to the DRM agent. These messages are included as part of one or more
<DRMControlInformation> element inside the Content Access Download Descriptor (as defined by Annex E).
These may include messages (such as a Marlin preview license) in cases where license information and the content
to be downloaded can be packaged together.

Interface d4) is the actual interface for downloading the content. The protocols that can be used for downloading
content are defined in the Open ITPV Forum Protocols specification document. The default protocol is HTTP, with
support for HTTP Range requests. The HTTP Range requests are used in order for downloads to be able to resume
after e.g. network failure or device power-down, because as mentioned above, the download manager is an
autonomous component that must continue downloading the requested content items as a background process, even
after a device power-down or network failure, until it succeeds or the user has given permission to terminate the
download.

Interface d5) defines an interface to enable error recovery for the download mechanism. It could be used to recover
from errors or other situations that lead to the corruption or deletion of the content/licenses or a current download to
fail. An example usage is as follows: to be able to refetch the content, and its licenses from the CoD store the OITF
may synchronize with the CoD store by issuing a secure HTTP GET request to the URL of element <OriginSite>
concatenated with “/synchronize” as defined by the content-access descriptor, after which the IPTV application
offering the content-download replies with an XML document describing the list of zero or more content IDs that
had previously been downloaded by the given user (i.e. it is assumed that the IPTV application offering the content
download still remembers which content a user has bought and downloaded before), using for example the following
format:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="synchronizelist" type="SynchronizeType"/>
 <xs:complexType name="SynchronizeType">
 <xs:sequence>
 <xs:element name="content" type="ContentType" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

Page 327 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 <xs:complexType name="ContentType">
 <xs:sequence>
 <xs:element name="content_ID" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Example:

<synchronizelist>
 <content>
 <content_ID>item 1</content_ID>
 <content_ID>item 2</content_ID>
 ...
 </content>
 </synchronizelist>

Note: To authenticate the user, cookies or single sign on may be used.

The OITF MAY use this information to decide which content and which licenses to refetch. Refetching the content is
done by issuing a secure HTTP GET request to the following URL:

<OriginSite> + “/synchronize” + “?” + a <content_ID> value

after which the application offering the content download replies with the appropriate information to retrigger the
download by providing the appropriate Content Access Download Descriptor in order to trigger the download
manager and DRM agent to redownload the content and related licenses.

Interface d6): Although the download manager is an autonomous process, the user may sometimes want to view or
control the state of the download manager. To this end, the download manager will typically offer its own user
interface, which allows the user to manage the ongoing downloads (e.g. suspend/resume, cancel) and monitor the
progress of the items that are being downloaded. This is interface d6) in the figure above. In non-managed network
deployments this is typically a local user interface, for which no protocol needs to be defined. However, since it may
be useful for the user to have a quick overview of the current downloads, in Section 7.15.1 of this document a
visualization embedded object called application/oipfStatusView has been defined by which a (third-party)
server provider could include an overview of the status of the download manager as part of its UI. NOTE: for
managed network deployments Javascript interfaces may be needed to have more control over the UI of the
download manager. This is covered by the download manager APIs in Section 7.4.3 of the DAE specification.

Interface e*: Unicast Streaming and playback of downloaded content using A/V Control object

The CEA-2014-A A/V control object may be used to render unicast streaming content triggered by a content-access
streaming descriptor (as specified in Section 7.14.2) and may be used to play back (partially) downloaded content by
using the method setSource as specified in Section 7.14.8.

Interface e0) can be used to pass for a content access streaming descriptor to set up a protected stream, by passing
through interface e1 the necessary information for the A/V player to set up the stream through interface e2), and for
passing included <DRMControlInformation> messages to the DRM agent for DRM protection of the streamed
content using interface f).

Interface e0) can also be used to get feedback from the A/V player (such as DRM related playback errors as defined
in Section 7.13.5) in case of playing streaming content or partially downloaded content (through method
setSource()).

Interface f: Request license

The A/V Player will render the content. When the content is protected, the A/V embedded object will have to get the
necessary keys from the DRM agent using interface f) in order to decrypt the content.

If the content is played inside the browser, interface e1) defines a callback event “onDRMRightsError” to allow
the page to handle DRM-related errors (in addition to c1).

Interface g*: Local metadata based applications

These interfaces are for use with local OITF embedded and DAE applications that may wish to use a metadata CG
client for browsing and selecting the content.

Page 328 (356)

 Copyright 2010 © Open IPTV Forum e.V.

D.3 Additional notes about Content-on-Demand
For a detailed specification of how devices and users are authenticated, we refer to [OIPF_CSP2]. For the security model
related to accessing the DRM agent and Download manager from an external source, such as a web page (i.e. to open up
the browser’s sandbox), we refer to Section 10.1.

Page 329 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex E. Content Access Descriptor Syntax and Semantics

E.1 Content Access Download Descriptor Format
An OITF that supports Content Download (i.e. if the <download> element has been given value “true” in the OITF’s
capability profile as specified in Section 9.3.4) SHALL support parsing and interpretation of a Content Access
Download Descriptor with MIME type “application/vnd.oipf.ContentAccessDownload+xml”.

 A valid Content Access Download Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 targetNamespace="urn:oipf:iptv:ContentAccessDownloadDescriptor:2008"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is iptv-ContentAccessDownloadDescriptor.xsd -->
 <!-- this schema redefines the generic Content Access Descriptor Schema iptv-
 AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
 values for attribute "TransferType" to "playable_download" and "full_download" -->
 <xs:redefine schemaLocation="iptv-AbstractContentAccessDescriptor.xsd">
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="tns:TransferTypeEnum">
 <xs:enumeration value="full_download"/>
 <xs:enumeration value="playable_download"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
</xs:schema>

The semantics of the allowable values for attribute TransferType as defined by simple string type
TransferTypeEnum is as follows:

a) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:

i) “full_download”, which indicates that the content-item must be fully downloaded and stored before
playback.

ii) “playable_download”, which indicates that the content-item is available for playback whilst it is being
downloaded and stored by the download manager. The term “playable_download” is used solely in the
context of the download manager and relates to storing the content (on persistent storage), and playing the
stored version, and does not relate to buffering in the context of HTTP streaming.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in Annex E.3.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Download
Descriptor.

E.2 Content Access Streaming Descriptor Format
An OITF SHALL support parsing and interpretation of a Content Access Streaming Descriptor with MIME type
“application/vnd.oipf.ContentAccessStreaming+xml”.

A valid Content Access Streaming Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 targetNamespace="urn:oipf:iptv:ContentAccessStreamingDescriptor:2008"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is iptv-ContentAccessStreamingDescriptor.xsd -->
 <!-- this schema redefines the generic Content Access Descriptor Schema iptv-

Page 330 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 AbstractContentAccessDescriptor.xsd as defined in Annex E.3 by limiting the allowable
 values for attribute "TransferType" to "streaming" -->
 <xs:redefine schemaLocation="iptv-AbstractContentAccessDescriptor.xsd">
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="tns:TransferTypeEnum">
 <xs:enumeration value="streaming"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:redefine>
</xs:schema>

The semantics of the allowable values for attribute TransferType as defined by simple string type
TransferTypeEnum is as follows:

a) Attribute “TransferType”, which indicates the type of transfer used for the content, SHALL have one of the
following values:

i) “streaming”, which indicates that the content-item is streamed and should not be stored. This
TransferType value is required for unicast streaming using an A/V control object as defined in Section
7.14.2.

The syntax and semantics of the imported elements from the generic Content Access Descriptor Schema SHALL be as
defined in Annex E.3.

NOTE: An OITF SHALL silently ignore unknown elements and attributes that are part of a Content Access Streaming
descriptor.

E.3 Abstract Content Access Descriptor Format
This section specifies the generic (i.e. "abstract") content access descriptor XML Schema that forms the basis for the
XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

An Abstract Content Access Descriptor SHALL adhere to the semantics as defined in the bulleted list below. In this
bulleted list, optional means optional for server, but mandatory to be supported on OITFs that have indicated support for
MIME type “application/vnd.oipf.ContentAccessDownload+xml”. Mandatory means mandatory for the
server to include this element in the content access descriptor.

1) <Contents> - mandatory element which is a container for one or more associated <ContentItem> elements as
child element.

2) <ContentItem> - mandatory element which indicates a content-item. All other elements listed below are child-
elements of a <ContentItem> element.

3) <Title> - mandatory element which indicates a user interpretable name to describe the content item. In case of
content download, it may serve as a basis/suggestion for the actual filename used for storing the downloaded content
item. It is recommended for an OITF to not require the user to enter a filename and select the storage device for
storing a downloaded content item.

4) <Synopsis> - optional element which indicates a user interpretable description of the content item.

5) <OriginSite> - mandatory element which indicates the URL of the site from which this content access description
document can be downloaded. Typically this is the site from which the content is/can be purchased.

6) <OriginSiteName> - Optional element, which gives the friendly name describing the origin site.

7) <ContentID> - Optional element which gives a unique identification of the content item relative to the OriginSite.

8) <ContentURL> - mandatory element which indicates the URL from which the content can be fetched. The element
has the following attributes:

Page 331 (356)

 Copyright 2010 © Open IPTV Forum e.V.

a) Optional attribute “DRMSystemID”, which indicates the DRM system for which this URL applies, using a
value as defined by element DRMSystemID in Table 8 of Section 3.3.2 of [OIPF_META2]. For example, for
Marlin, the DRMSystemID value is “urn:dvb:casystemid:19188”. This attribute is used for linking a
<ContentURL> to a corresponding <DRMControlInformation> element with the same DRMSystemID value. If
the “DRMSystemID” attribute is not specified or has value empty string, then this indicates that the content is
not DRM protected.

b) Attribute “TransferType”, which indicates the type of transfer used for the content. The concrete values that
are allowed for this attribute are defined in Annexes E.1 and E.2 for document types
application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml.

c) Mandatory attribute “Size”, which indicates the size of the content item in bytes. If the size is unknown (e.g. in
case of streaming), the value of this element is -1. If the value is greater or equal to 0, the value given here
SHALL correspond to the value given to the Content-Size HTTP header if the content is fetched through an
HTTP ContentURL. If after downloading the content item the size of the downloaded content item does not
match the indicated size parameter, the OITF SHALL report failed download (if the
application/oipfDownloadManager object is used an event is dispatched to the
onDownloadStateChange listener(s) with reason code 3, “The item is invalid due to bad checksum or
length”). The OITF SHOULD remove the downloaded content item

d) Optional attribute “MD5Hash”, which indicates the MD5 hash value [RFC1321] of the content item. This value
is used to check the correctness of the downloaded file. If after downloading the content item the MD5 hash
value of the downloaded content item does not match the indicated MD5 hash value, it is recommended for the
OITF to remove the downloaded content item.

e) Optional attribute “Duration”, which indicates the media playback duration of the media item in the following
form "hh:mm:ss".

f) Mandatory attribute “MIMEType”, which indicates the MIME type of the content item. It is recommended for
an OITF to inform the user if the content-type of a content item being retrieved cannot be interpreted by the
OITF.

g) Optional attribute “MediaFormat”, which describes the media format of the content item. The value of this
element should be one of the terms defined by the AVMediaFormatCS classification scheme specified in
[OIPF_META2].

h) Optional attribute “VideoCoding”, which describes the coding format of the video. The value of this element
should be one of the terms defined by the VisualCodingFormatCS classification scheme defined in
[OIPF_META2].

i) Optional attribute “AudioCoding”, which describes the coding format of the audio. The value of this element
should be one of the terms defined by the AudioCodingFormatCS classification scheme defined in
[OIPF_META2].

Multiple <ContentURL> elements may be included for a single <ContentItem>, as long as each
<ContentURL> element has a different value for the “DRMSystemID” attribute.

9) <MetadataURL> - optional element which indicates the URL from which additional metadata can be fetched for the
content item, such as artwork, subtitle files. By default the metadata must be a text/xml document formatted
according to TV anytime, as defined in [OIPF_META2].

10) <NotifyURL> - optional element which indicates the URL to which an HTTP GET request SHALL be made by the
OITF, after the content-item has been fully and successfully fetched, in order to inform the server of the succesful
completion of the transfer. If any content is returned from the <NotifyURL>, it MAY be shown in the browser.

11) <IconURL> - optional element which indicates the URL of an image which is a visual representation of the item that
is being downloaded. Valid content types include the image formats as listed in Section 9 of [OIPF_MEDIA2].

12) <ParentalRating> - optional element which indicates the parental rating value (e.g. “PG-13”) for this content item.
The element has the following attributes:

Page 332 (356)

 Copyright 2010 © Open IPTV Forum e.V.

a) Attribute “Scheme”, which indicates the name of the parental rating scheme that is used for indicating the value.
Valid rating scheme names include the ParentalRating classification scheme names as identified by property
“scheme” of the ParentalRating object as defined in Section 7.9.4.

b) Attribute “Region”, which indicates the region to which the parental rating applies. Valid region names include
the case-insensitive alpha-2 region codes as defined in ISO 3166-1.

Multiple <ParentalRating> elements may exist, as long as each <ParentalRating> element has a different
value for the “Scheme” or the “Region” attribute.

13) <DRMControlInformation> - optional element which allows the inclusion of DRM related information that SHALL
be passed to the DRM agent. This element SHALL adhere to the DRMControlInformation Type Semantics as
defined in table 8 of Section 3.3.2 of [OIPF_META2]. For Marlin, additional semantics are defined in Section 4.1.5
of [OIPF_CSP2]. This element SHALL be included for any DRM System ID for which a corresponding
“DRMSystemID” value was specified as attribute of a <ContentURL> element.

Multiple <DRMControlInformation> elements MAY be included for a single <ContentItem>, as long as
each <DRMControlInformation> element has a different value for its “DRMSystemID” child element.

An Abstract Content Access Descriptor SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
<!-- schema filename is iptv-AbstractContentAccessDescriptor.xsd -->
<!-- this is the generic (i.e. "abstract") content access descriptor XML Schema that forms the
basis for the XML Schemas of document types: application/vnd.oipf.ContentAccessDownload+xml and
application/vnd.oipf.ContentAccessStreaming+xml. This schema includes the definition for
abstract type "DRMPrivateDataType" (as defined in Open IPTV Forum Solution Specification Volume
3 Metadata Release 1) and its specific instance type "MarlinPrivateDataType" or
"HexBinaryPrivateDataType" (as defined in Open IPTV Forum Solution Specification Volume 7
Authentication, Content Protection and Service Protection Release 1) -->
<xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
<xs:include schemaLocation="csp-MarlinPrivateDataType.xsd"/>
<xs:include schemaLocation="csp-DRMPrivateDataType.xsd"/>
<xs:include schemaLocation="csp-HexBinaryPrivateDataType.xsd"/>

<xs:element name="Contents" type="ContentsType"/>
 <xs:complexType name="ContentsType">
 <xs:sequence>
 <xs:element name="ContentItem" type="ContItemType" minOccurs="1"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContItemType">
 <xs:sequence>
 <xs:element name="Title" type="TitleType" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element name="Synopsis" type="SynopsisType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="OriginSite" type="xs:anyURI" minOccurs="1"/>
 <xs:element name="OriginSiteName" type="xs:string" minOccurs="0"/>
 <xs:element name="ContentID" type="xs:string" minOccurs="0"/>
 <xs:element name="ContentURL" type="ContentURLType" minOccurs="1"
 maxOccurs="unbounded"/>
 <xs:element name="MetadataURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="NotifyURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="IconURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="ParentalRating" type="ParentalRatingType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="DRMControlInformation" type="DRMControlInformationType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="TitleType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="SynopsisType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>

Page 333 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="ContentURLType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="DRMSystemID" type="xs:string" use="optional"/>
 <xs:attribute name="TransferType" type="TransferTypeEnum" use="required"/>
 <xs:attribute name="MD5Hash" type="xs:string" use="optional"/>
 <xs:attribute name="Duration" type="xs:time" use="optional"/>
 <xs:attribute name="Size" type="xs:integer" use="required"/>
 <xs:attribute name="MIMEType" type="xs:string" use="required"/>
 <xs:attribute name="MediaFormat" type="xs:string" use="optional"/>
 <xs:attribute name="VideoCoding" type="xs:string" use="optional"/>
 <xs:attribute name="AudioCoding" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<!-- The TransferType is a string in this generic content access descriptor. The values of the
TransferTypeEnum are restricted in the document instance types
"application/vnd.oipf.ContentAccessDownloadDescriptor" and
"application/vnd.oipf.ContentAccessStreamingDescriptor" as defined in Annexes E.1 and E.2.-->
 <xs:simpleType name="TransferTypeEnum">
 <xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:complexType name="ParentalRatingType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="Scheme" type="xs:string" use="optional"/>
 <xs:attribute name="Region" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>

 <xs:complexType name="DRMControlInformationType">
 <xs:sequence>
 <xs:element name="DRMSystemID" type="xs:string"/>
 <xs:element name="DRMContentID" type="xs:string"/>
 <xs:element name="RightsIssuerURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="SilentRightsURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="PreviewRightsURL" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="DoNotRecord" type="xs:boolean" minOccurs="0"/>
 <xs:element name="DoNotTimeShift" type="xs:boolean" minOccurs="0"/>
 <xs:element ref="DRMGenericData" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="DRMPrivateData" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="DRMGenericData" type="DRMGenericDataType"/>
 <xs:element name="DRMPrivateData" type="DRMPrivateDataType"/>

 <xs:complexType name="DRMGenericDataType">
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="MarlinPrivateData" type="MarlinPrivateDataType"
 substitutionGroup="DRMPrivateData"/>
 <xs:element name="HexBinaryPrivateData" type="HexBinaryPrivateDataType"
 substitutionGroup="DRMPrivateData"/>

</xs:schema>

An OITF SHALL silently ignore unknown elements and attributes that are part of a content-access descriptor.

Page 334 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex F. Capability Extensions Schema
This Annex contains the schema that includes the extensions and modifications to the capability negotiation mechanism
as defined in Section 9.3. This schema redefines and adds the necessary extensions to the existing capability description
schema as defined in Annex C of [CEA-2014-A]. The schema in this Annex SHALL be used instead of the existing
capability description as defined in Annex C of [CEA-2014-A]. Note that for the additional “0.33x0.33” value for
“scalingType” as defined in Section 9.3.15, a special construction has been defined. See the last two paragraphs of
this Annex for more information.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema xmlns="urn:oipf:config:oitf:oitfCapabilities:2009"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:oipf:config:oitf:oitfCapabilities:2009"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!-- schema filename is config-oitf-oitfCapabilities.xsd -->
 <!-- Redefined uiExtensionsType of the original schema as defined in Annex C of CEA-2014
 (i.e. imports/ce-html-profiles-1-0.xsd) to add the new elements defined in Section 9.2
 of Open IPTV forum Volume 5 Declarative Application Environment Release 1 specification.
 -->
 <xs:redefine schemaLocation="imports/ce-html-profiles-1-0.xsd">
 <xs:complexType name="uiExtensionType">
 <xs:complexContent>
 <xs:extension base="uiExtensionType">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="video_broadcast" type="videoBroadcastType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="overlaylocaltuner" type="overlayType"/>
 <xs:element name="overlayIPbroadcast" type="overlayType"/>
 <xs:element name="recording" type="pvrType"/>
 <xs:element name="parentalcontrol" type="parentalControlType"/>
 <xs:element name="extendedAVControl" type="xs:boolean"/>
 <xs:element name="clientMetadata" type="metadataType"/>
 <xs:element name="configurationChanges" type="xs:boolean"/>
 <xs:element name="ims" type="xs:boolean"/>
 <xs:element name="communication_services" type="xs:boolean"/>
 <xs:element name="drm" type="drmType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="remote_diagnostics" type="xs:boolean"/>
 <xs:element name="pollingNotifications" type="xs:boolean"/>
 <xs:element name="mdtf" type="xs:boolean"/>
 <xs:element name="widgets" type="xs:boolean"/>
 <xs:element name="html5_media" type="xs:boolean"/>
 <xs:element name="remoteControlFunction" type="xs:boolean"/>
 <xs:element name="wakeupApplication" type="xs:boolean"/>
 <xs:element name="wakeupOITF" type="xs:boolean"/>
 <xs:element name="hibernateMode" type="xs:boolean"/>
 </xs:choice>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Redefined downloadType to add attribute manageDownloads -->
 <xs:complexType name="downloadType">
 <xs:simpleContent>
 <xs:extension base="downloadType">
 <xs:attribute name="manageDownloads" type="manageDownloadsType" default="none"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <!-- Redefined audioProfileType to add attribute DRMSystemID -->
 <xs:complexType name="audioProfileType">
 <xs:complexContent>
 <xs:extension base="audioProfileType">
 <xs:attribute name="DRMSystemID" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Redefined videoProfileType to add attribute DRMSystemID -->
 <xs:complexType name="videoProfileType">
 <xs:complexContent>
 <xs:extension base="videoProfileType">
 <xs:attribute name="DRMSystemID" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:redefine>
 <!-- ADDED: type definitions for the new elements defined in Section 9.2 of the
 Open IPTV forum Volume 5 Declarative Application Environment Release 1 specification
 -->
 <xs:simpleType name="manageDownloadsType">
 <xs:restriction base="xs:string">

Page 335 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 <xs:enumeration value="none"/>
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="samedomain"/>
 <xs:enumeration value="all"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="videoBroadcastType">
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="transport" type="xs:string"/>
 <xs:attribute name="nrstreams" type="xs:unsignedInt" default="1"/>
 <xs:attribute name="scaling" type="scalingType" default="arbitrary"/>
 <xs:attribute name="minSize" type="xs:unsignedInt" default="0"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:complexType>
 <xs:complexType name="pvrType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="ipBroadcast" type="xs:boolean" default="false"/>
 <xs:attribute name="manageRecordings" type="xs:string"/>
 <xs:attribute name="postList" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="parentalControlType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="schemes" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="metadataType">
 <xs:simpleContent>
 <xs:extension base="xs:boolean">
 <xs:attribute name="type" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="drmType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="DRMSystemID" type="xs:string" use="required"/>
 <xs:attribute name="protectionGateways" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

Due to limitations of XML Schema it is not possible to redefine/extend the enumeration of type “scalingType” to add
the additional value “0.33x0.33” as defined in Section 9.3.15. Therefore, this value must be directly added to the
original schema as defined in Annex C of [CEA-2014-A] (i.e. imports/ce-html-profiles-1-0.xsd), as follows:

 [...]

 <xs:simpleType name="scalingType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="arbitrary"/>
 <xs:enumeration value="quartersize"/>
 <xs:enumeration value="none"/>
 <xs:enumeration value="0.33x0.33"/>
 </xs:restriction>
 </xs:simpleType>
[...]

Page 336 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex G. Client Channel Listing Format
An OITF that supports sending the Client Channel Listing through the HTTP POST method defined in Section 7.13
SHALL adhere to the XML Schema of the Client Channel Listing defined in this annex for which the following
semantics apply:

1) <ChannelConfig> - mandatory root element of the Client Channel Listing.

2) <ChannelList> - mandatory container element for zero or more <Channel> elements, the order of which
corresponds to the channel order as managed by the OITF.

3) <Channel> - element that represents a channel that can be received by a tuner of the OITF. The element has the
following attributes:

a) Mandatory attribute “ccid” which specifies a unique identifier of the channel within the scope of the OITF.
The format of ccid SHALL have a prefix ‘ccid:’, e.g., ‘ccid:{tuner.}majorChannel{.minorChannel}’. The
ccid is defined and managed by the OITF.

b) Optional attribute “channelType” which indicates the type of media content carried over the channel. Valid
values are specified in Section 7.13.12.1. If not included, the default value is “TYPE_OTHER”.

c) Mandatory attribute “idType” which specifies the type of identification that is used for the channel. Valid
values are specified in Section 7.13.12.1.

d) Optional attribute “tunerID” which specifies a unique identifier of the tuner within the scope of the OITF.

4) <ONID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies
the DVB or ISDB original network ID. The value can be empty (i.e. <ONID/>) if stream does not contain an
SDT_Actual.

5) <TSID> - mandatory child element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the
DVB or ISDB transport stream ID.

6) <SID> - mandatory element of a <Channel> element of type ID_DVB_* or ID_ISDB_* which specifies the DVB
or ISDB service ID.

7) <SourceID> - mandatory child element of a <Channel> element of type ID_ATSC_T which specifies the ATSC
source_ID.

8) <Freq> - mandatory child element of a <Channel> element of type “ID_ANALOG” which specifies the frequency
of the content carrier in kHz.

9) <CNI> - optional child element of a <Channel> element of type “ID_ANALOG” which specifies the VPS/PDC
confirmed network identifier.

10) <IPBroadcastID> - mandatory child element of a <Channel> element of type “ID_IPTV_SDS” or
“ID_IPTV_URI”. if the channel has type “ID_IPTV_SDS”, this element denotes the DVB Textual Service Identifier
of the IP broadcast service, specified in the format “ServiceName.DomainName” with the ServiceName and
DomainName as defined in
TS 102 034 V1.3.1. If the channel has type “ID_IPTV_URI”, this element denotes the URI of the IP broadcast
service.

11) <MajorChannel>> - optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes
the major channel number, if assigned. Value 0 otherwise.

12) <MinorChannel> optional child element of a <Channel> element of type “ID_ATSC_*”. This element denotes
the minor channel number (in relation to the major channel number as indicated through element <MajorChannel>)
if assigned. Value 0 otherwise.

13) <Name> - mandatory child element of a <Channel> element which specifies the name of the broadcaster. May be
an empty string.

Page 337 (356)

 Copyright 2010 © Open IPTV Forum e.V.

14) <Favourite> - optional child element of a <Channel> element indicating that the user has marked this channel as a
favourite. The element has the following attribute:

a) Optional attribute “FavIDS” indicating in which favourite lists, if any, this channel is selected.

15) <FavouriteLists> - optional child element of the <ChannelConfig> element containing one or more
<FavouriteList> elements.

16) <FavouriteList> - mandatory child element of the <FavouriteLists> element that represents a favourite list that
is (partially) managed by the OITF. The element has the following attribute:

a) Mandatory attribute “FavID” which specifies the unique identifier of the favourite list.

17) <FavName> - mandatory child element of the <FavouriteList> element specifying the name of the favourite
list.

18) <CurrentFavouriteList> - conditionally optional child element of the <ChannelConfig> element specifying the
currently active favourite list.

19) <Recordable> - optional child element of a <Channel> element indicating whether the channel can be recorded.
Valid values include “True” or “False”. If this element is not included, the default value is “False”. The value
SHALL be ignored if the OITF did not indicate support for control of its recording functionality.

20) <Locked> - optional child element of a <Channel> element indicating whether the current state of the parental
control system prevents the channel from being viewed (e.g. a correct parental control pin has not been entered).
Valid values include “True” or “False”. If this element is not included, the default value is “False”.

21) <ManualBlock> - optional child element of a <Channel> element indicating whether the user has manually
blocked viewing of this channel. Manual blocking of a channel treats the channel as if its parental rating value
always exceeded the system threshold. Valid values include “True” or “False”. If this element is not included, the
default value is “False”.

A valid Client Channel Listing SHALL adhere to the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="ChannelConfig">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ChannelList"/>
 <xs:sequence minOccurs="0">
 <xs:element ref="FavouriteLists"/>
 <xs:element ref="CurrentFavouriteList" minOccurs="0"/>
 </xs:sequence>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ChannelList">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Channel" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Channel">
 <xs:annotation>
 <xs:documentation>
 For a DVB digital channel use ONID+TSID+SID,
 for an ISDB (ARIB) digital channel use ONID+TSID+SID,
 for a ATSC terrestrial channel use SourceID,
 for analog channel use Freq and CNI (if available).
 The IPBroadcastID element is relevant for IPTV broadcasts, as defined in Section 7.5.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="ONID"/>
 <xs:element ref="TSID"/>

Page 338 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 <xs:element ref="SID"/>
 </xs:sequence>
 <xs:element ref="SourceID"/>
 <xs:sequence>
 <xs:element ref="Freq"/>
 <xs:element ref="CNI" minOccurs="0"/>
 </xs:sequence>
 <xs:element ref="IPBroadcastID"/>
 </xs:choice>
 <xs:element ref="Name"/>
 <xs:element ref="Favourite" minOccurs="0"/>
 <xs:element ref="Recordable" minOccurs="0"/>
 <xs:element ref="Locked" minOccurs="0"/>
 <xs:element ref="ManualBlock" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="CCID" type="xs:ID" use="required"/>
 <xs:attribute name="channelType" type="xs:string" default="TYPE_OTHER"/>
 <xs:attribute name="idType" type="xs:string" use="required"/>
 <xs:attribute name="TunerID" type="xs:ID" minOccurs="0"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="ONID" type="xs:integer"/>
 <xs:element name="TSID" type="xs:integer"/>
 <xs:element name="SID" type="xs:integer"/>
 <xs:element name="SourceID" type="xs:integer"/>
 <xs:element name="Freq" type="xs:integer"/>
 <xs:element name="CNI" type="xs:integer"/>
 <xs:element name="IPBroadcastID" type="xs:string"/>
 <xs:element name="MajorChannel" type="xs:integer"/>
 <xs:element name="MinorChannel" type="xs:integer"/>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Favourite">
 <xs:complexType>
 <xs:attribute name="FavIDS" type="xs:IDREFS"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="FavouriteLists">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="FavouriteList" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FavouriteList">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="FavName">
 <xs:attribute name="FavID" type="xs:ID" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="FavName">
 <xs:sequence>
 <xs:element ref="FavName"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="FavName" type="xs:string"/>
 <xs:element name="CurrentFavouriteList">
 <xs:complexType>
 <xs:attribute name="FavID" type="xs:IDREF" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Recordable" type="xs:boolean"/>
 <xs:element name="Locked" type="xs:boolean"/>
 <xs:element name="ManualBlock" type="xs:boolean"/>
</xs:schema>

Page 339 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex H. Display model

H.1 Logical Plane Model
Digital TV terminals typically have multiple planes for displaying graphics, subtitles, video and background color. This
section defines a logical plane model for OITFs. Figure 19 shows the ordering of these logical planes.

Background color plane

(black)

Video plane

Subtitles plane

DAE application graphic

plane

Platform-specific application

graphic plane

Figure 19: Logical Plane Model

This logical plane model does not imply any particular physical implementation. For instance, the presence of two
graphic planes and a subtitle plane does not imply a requirement for three hardware graphic planes.

The logical planes are defined as follows:

• The “Background color plane” displays a single uniform color which shall be black. This plane is at the bottom of
the logical display stack.

• The “Video plane” is used to display video. This plane is on top of the background color plane in the logical display
stack. The interaction between the “video plane” and the video/broadcast object is described in Section 10.1.2.
Streamed video may appear to be presented in a plane other than the logical video plane. The present document is
intentionally silent about the mechanism used by an OITF to achieve this behaviour

• The “Subtitles plane” is used to display subtitles. This plane is on top of the video plane in the logical display stack.

• The “DAE application graphic plane” is used to display any running DAE applications. This plane is on top of the
subtitles plane in the logical display stack. The logical resolution of this plane is given by the <width> and
<height> elements of the capability description.

• The “Platform-specific application graphic plane” is used to display applications specific to the OITF such as native
system menus, banners or pop-ups. This plane is on top of the DAE application graphic plane in the logical display
stack.

For subtitles, the following rules apply:

• OITFs SHOULD support simultaneous display of application and subtitles. In that case, the OITF SHALL display
the application over the subtitles (as shown in Figure 19). If the video is rescaled, the subtitles SHOULD be
rescaled/repositioned appropriately or not displayed at all.

• If the presentation of subtitles is requested prior to the launch of an application, then OITFs which cannot support
simultaneous display of applications and subtitles SHALL display subtitles in preference to running the application.
The OITF may offer the end-user the opportunity to disable subtitles and run the application instead.

Page 340 (356)

 Copyright 2010 © Open IPTV Forum e.V.

• If the presentation of subtitles is requested while an application is running, OITFs which cannot support
simultaneous display of applications and subtitles shall display applications in preference to the presentation of
subtitles.

H.2 Interaction with the video/broadcast and A/V Co ntrol
objects

The behaviour of the video/broadcast object is defined in section 7.13.1.1. When no video/broadcast object is
instantiated, or when all video/broadcast objects are in the Unrealized state, broadcast video presentation SHALL
be under the control of the OITF. When video is under the control of the OITF:

• Any broadcast video being presented SHALL be displayed in the logical video plane.

• The complete logical video plane SHALL be filled.

• The OITF MAY scale and/or position video, for example to remove black bars.

For broadcast related applications as defined in section 5.2.3, broadcast video presentation SHALL initially be under the
control of the OITF. Applications wanting to control video presentation SHALL create a video/broadcast object.

When a video/broadcast object is in any state other than the Unrealized state, broadcast video presentation
SHALL be under the control of the application. When video is under the control of the application:

• When the video/broadcast object or A/V Control object is not in “full-screen mode”, any video being presented
SHALL be scaled and positioned to fit the object. The area of the video plane not containing video SHALL be
transparent.

• When the video/broadcast object or A/V Control object is in “full-screen mode”, presented video SHALL be
scaled to fill the entire logical video plane. The OITF MAY further scale and/or position video, for example to
remove black bars.

• Depending on the Z index of the video/broadcast or A/V Control object with respect to other HTML elements
(regardless of whether the object is in “fullscreen mode” or not), presented video may fully or partially obscure other
HTML elements with a lower Z index, and may in turn be fully or partially obscured by HTML elements with a
higher Z index. As a result of this, video may appear to be presented in a plane other than the logical video plane.
This specification is intentionally silent about the mechanism used by an OITF to achieve this behaviour.

• Calling the Application.hide() method SHALL cause video (and any subtitles) being presented under the control
of that application to be hidden, and any audio being presented by the video/broadcast or A/V Control object
under the control of that application to be muted. Calling Application.show() SHALL cause video and audio
presentation to be restored.

If the release() method is called on a video/broadcast object, or if the object is garbage collected, control of
broadcast video presentation SHALL be returned to the OITF and video SHALL be re-scaled and re-positioned (if
necessary).

H.3 Graphic safe area (Informative)
Figure 20 shows the recommended safe area for content authoring for the OITF_HD_UIPROF default profile:

Page 341 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Figure 20: Graphic Safe Area

Page 342 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex I. HTML 5 Video Tag Support
This section provides a comparison between HTML5 <video> and the visual objects defined in this specification. When
not supported by HTML5 it is indicated with NS (Not Supported). When not in the scope of HTML 5 it is indicated with
NA (Not Applicable). If there are differences in values or behavior additional information is provided under the
Comments column.

 A/V Control Object Broadcast object HTML5 IDL
attributes

Comments

General Number width Integer width video.videoWidth

Number height Integer height video.videoHeigh
t

readonly Boolean fullScreen readonly Boolean fullScreen NS Not in HTML5
because of security
issues

setFullScreen (Boolean
fullscreen)

void setFullScreen(Boolean
fullscreen)

NS Not in HTML5
because of security
issues

focus () window.focus()

Object onfocus function onfocus onfocus

Object onblur function onblur onblur

Object onFullScreenChange function onFullScreenChange NS Not in HTML5
because of security
issues

Volume Boolean setVolume(Number
volume)

Boolean setVolume(Integer
volume)

float
media.volume

The HTML5 value
is in a range
between 0 and 1,
whereas the DAE
visual objects are
between 0 and 100

 boolean
media.muted

 boolean
media.controls

true if the user
agent should
provide its own set
of controls

 onvolumechange

 Integer getVolume() float
media.volume

Components
(ex. subtitles,
languages)

AVComponentCollection
getComponents(Integer
componentType)

AVComponentCollection
getComponents(Integer
componentType)

NS Subtitles and media
annotations not
currently in
HTML5 (but
proposals exist)

AVComponentCollection AVComponentCollection NS

Page 343 (356)

 Copyright 2010 © Open IPTV Forum e.V.

getCurrentActiveComponents(
Integer componentType)

getCurrentActiveComponents(
Integer componentType)

void selectComponent(
AVComponent component)

void selectComponent(
AVComponent component)

NS

void unselectComponent(
AVComponent component)

void unselectComponent(
AVComponent component)

NS

Broadcast
specific

 function
onChannelChangeError(
Channel channel, Number
errorState)

NA

 Integer playState NA

 function onPlayStateChange(
Number state, Number error)

NA

 Channel
bindToCurrentChannel()

NA

 void setChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL
)

NA

 void prevChannel() NA

 void nextChannel() NA

 void release() NA

 void setChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL,
Integer offset)

NA

 readonly Channel
currentChannel

NA

Playback
control

String data video.url

readonly Number playPosition readonly Integer playPosition attribute float
currentTime;
(get)

 readonly attribute
float startTime;

readonly Number playTime readonly attribute
float duration

readonly Number playState readonly attribute
boolean paused;

readonly attribute

Page 344 (356)

 Copyright 2010 © Open IPTV Forum e.V.

boolean ended;

readonly Number error attribute int
media.error and
error / abort
events

readonly Number speed readonly Number playSpeed attribute float
defaultPlaybackR
ate;

attribute float
playbackRate;

Boolean play (Number speed
)

Boolean resume()

Boolean pause()

void play();

void pause();

attribute boolean
autoplay;

attribute boolean
loop;

Recording aspects
not covered

 Boolean setSpeed(Number
speed)

attribute float
playbackRate;

Boolean stop () void stopRecording() NA (no recording
support)

Stop functionality
can be implemented
with
pause();currentTim
e=0;

 Boolean stopTimeshift() NA (no recording
support)

Boolean seek (Number pos) Boolean seek(Integer offset,
Integer reference)

attribute float
currentTime;
(set)

The HTML5 values
are in seconds,
whereas the DAE
values are in
milliseconds.

Boolean next () NS (no playlist
support)

Boolean previous () NS (no playlist
support)

 readonly attribute
TimeRanges
played;

 readonly attribute
TimeRanges
seekable;

function
onPlaySpeedChanged(
Number speed)

function
onPlaySpeedChanged(
Number speed)

events:
ratechange

durationchange

Page 345 (356)

 Copyright 2010 © Open IPTV Forum e.V.

script
onPlayPositionChanged(
Integer position)

function
onPlayPositionChanged(
Integer position)

event: timeupdate

readonly Number playSpeeds[
]

readonly Number playSpeeds[
]

NS

readonly String
oitfSourceIPAddress

 NA �

readonly String
oitfSourcePortAddress

 NA

Boolean
oitfNoRTSPSessionControl

 NA

String oitfRTSPSessionId NA

Recording
specific

 String recordNow(Integer
duration)

NA �

 readonly Integer
playbackOffset

NA

 readonly Integer maxOffset NA

 readonly Integer
recordingState

NA

 function onRecordingEvent NA

 readonly Integer state NA

 readonly Integer error NA

 readonly String recordingId NA

Page 346 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex J. DLNA RUI Remote Control Function Sequences
There are two cases to send the control UI to the Remote Control Device:

• First, when the DAE application is created (for example, when loaded in response to a request from the Remote
Control Device), the DAE application SHALL try to give a proper control UI to the Remote Control Device
(Creating DAE app � finding the Remote Control Device handle � giving the control UI). See Annex J.1.

The DAE application is launched in response to an HTTP request from an OITF control UI being rendered in the
Remote Control Device. The DAE application checks the currentRemoteDeviceHandle property when it has
completed loading. If this property returns “undefined”, it means that the current DAE application wasn’t
launched by a Remote Control Device (but by some other means), whereas if this property returns a value (the
Remote Control Device handle), the DAE application knows that it must send its Control UI to the Remote Control
Device.

This scenario is made based on Section 10.6 of [OIPF_ARCH2].

• Second, when the DAE application is already running, the DAE application sends a control UI in response to a
control UI request (DAE app running � getting the CUI request event � giving the control UI). See Annex J.2.

The DAE application is currently being executed in the OITF and during this time the Remote Control Device
requests the control UI from it. In this case, the OITF generates the ReceiveRemoteMessage event to the DAE
application with type set to 0. Then the DAE application retrieves the control UI from the IPTV Applications server
and returns it to the Remote Control Device.

Annex J.3 shows the message flow for sending and receiving messages between control UI in the Remote Control Device
and the DAE application.

NOTE: Dotted lines in the diagrams below indicate internal operations.

J.1 Launching a DAE application to obtain the Contr ol UI

Page 347 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Remote Control

Device

IPTV

Applications

server
DLNA RUIS

DAE

App

RCF

Plug-in
DAE

Browser

OITF

4. Rendering

OITF XML UI Listing

7. Rendering

the OIPF CUI

13. Executing

DAE App

DLNA RUIC

19. Rendering

CUI

20. Sending and receiving a message between the Remote Device and the DAE application

(See Annex I.3)

The following is a brief description of the steps in the flow:

Note: The dotted line is an internal operation.

1) The user activates a DLNA RUIC function.

2) The DLNA RUIC discovers the DLNA RUIS in the OITF as defined in Section 5.1 of [CEA-2014-A] , and the
DLNA RUIC and the DLNA RUIS perform capability profile matching using the mechanism defined in Section 5.2
of [CEA-2014-A].

Page 348 (356)

 Copyright 2010 © Open IPTV Forum e.V.

3) DLNA RUIC requests XML UI Listing to DLNA RUIS, and gets it.

4) DLNA RUIC renders XML UI Listing in its own screen.

5) The user chooses the OIPF CUI in the XML UI Listing.

6) DLNA RUIC requests the OIPF CUI and gets it. (This OIPF CUI could be made based on Open IPTV Forum
Metadata information)

7) DLNA RUIC renders the OIPF CUI.

8) The user starts OIPF service with the OIPF CUI which came from DLNA RUIS in the OITF.

Note: The steps from step 1 to step 8 conform to the normal DLNA RUI sequence.

9) The OIPF CUI in the DLNA RUIC sends the OIPF service HTTP Request with capability in the User-Agent to
DLNA RUIS. The OIPF service HTTP Request is vender specific URI to create DAE application.

10) DLNA RUIS orders the DAE Browser to execute the requested DAE application.

11) DAE Browser requests the DAE application.

12) IPTV Applications server sends the requested DAE application.

13) DAE Browser executes the DAE application.

14) When the DAE application is loaded, the OITF dispatches a ReceiveRemoteMessage event with type
CREATE_APP to the application/oipfRemoteControlFunction object in the DAE application.

15) The DAE application requests the CUI by using XMLHTTPRequest object with capability of DLNA RUIC.

16) The IPTV Applications server sends the CUI.

17) The DAE application sends the CUI to the application/oipfRemoteControlFunction object by using the
sendRemoteMessage() method.

18) DLNA RUIS sends the content of the CUI CE-HTML document to DLAN RUIC through a HTTP Response body.

19) DLNA RUIC renders the CUI. DLNA RUIC fetches resources (images/css/js) directly from the IPTV application
server.

20) DLNA RUIC sends a message to the DAE application and receive the response message.

J.2 Obtaining the control UI from a running DAE app lication

Page 349 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Remote Control

Device

IPTV

Applications

server
DLNA RUIS

DAE

App

RCF

Plug-in
DAE

Browser

OITF

DLNA RUIC

(+RUIPL+)
DLNA RUIC

8. Rendering

XML UI Listing

1. Executing

DAE App

15. Rendering

CUI

16. Sending and receiving a message between the Remote Device and the DAE application

(See Annex I.3)

3. Making a XML UI Listing

The following is a brief description of the steps in the flow:

Note: The dotted line is an internal operation.

1) DAE application which has the application/oipfRemoteControlFunction object is being executed.

2) The Server Side XML UI Listing is updated in the DLNA RUIS through the useServerSideXMLUIListing()
method.

3) The user activates a DLNA RUIC function.

4) The DLNA RUIC discovers the DLNA RUIS in the OITF as defined in Section 5.1 of [CEA-2014-A] , and the
DLNA RUIC and the DLNA RUIS perform capability profile matching using the mechanism defined in Section 5.2
of [CEA-2014-A].

5) DLNA RUIC requests XML UI Listing to DLNA RUIS.

Page 350 (356)

 Copyright 2010 © Open IPTV Forum e.V.

6) DLNA RUIS sends the Server side XML UI Listing to the DLNA RUIC.

7) DLNA RUIC renders XML UI Listing in its own screen.

8) When a user chooses one of the CUIs in the XML UI Listing, DLNA RUIC sends the HTTP request message
(/rcf/request_cui) with the RUIC capability information in the User-Agent to DLNA RUIS to get the CUI.

9) The application/oipfRemoteControlFunction object dispatches a ReceiveRemoteMessage event with
type REQUEST_CUI to the DAE application.

10) The DAE application requests the CUI using XMLHTTPRequest object, including the capability description
received from the RUIC in the request.

11) The IPTV Applications server sends the CUI.

12) The DAE application sends the CUI to the application/oipfRemoteControlFunction object by using the
sendRemoteMessage() method.

13) DLNA RUIS sends the content of the CUI CE-HTML to DLAN RUIC (+RUIPL+) by using HTTP Response body

14) DLNA RUIC renders the CUI. DLNA RUIC fetches resources (images/css/js and any other HTML documents)
directly from the IPTV application server.

15) DLNA RUIC sends a message to the DAE application and receive the response message as described in annex I.3.

J.3 Sending and receiving messages between the Remo te
Control Device and DAE application

5. Handing a message

Remote Control

Device

IPTV

Applications

server
DLNA RUIS

DAE

App

RCF

Plug-in
DAE

Browser

OITF

DLNA RUIC

(+RUIPL+)
DLNA RUIC

UNIS- 6

1. Rendering

CUI

Page 351 (356)

 Copyright 2010 © Open IPTV Forum e.V.

The following is a brief description of the steps in the flow:

1) DLNA RUIC renders the CUI.

2) User sends a message to the DAE application. For example, user clicks a button which could send a specific message
to the DAE application.

3) The CUI sends a message to the DLNA RUIS by using a pre-defined URL (/rcf/request_msg).

4) The application/oipfRemoteControlFunction object dispatches a ReceiveRemoteMessage event with
type REQUEST_MSG to the DAE application.

5) The DAE application handles the message received from the DLNA RUIC.

6) The DAE application sends a message to the application/oipfRemoteControlFunction object by using a
sendRemoteMessage() method.

7) DLNA RUIS sends a message to DLNA RUIC.

Page 352 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex K. ECMAScript Conventions
In the documented APIs ECMAScript attributes are read-write unless otherwise specified.

The type “Integer” is not a valid Javascript type as is. It is used as a short hand notation for a subset of type “Number”
which includes only the numbers that can be written without a fractional or decimal component.

K.1 Collections
This document defines a number of ECMAScript collections, used by APIs to return lists of objects from the OITF to
applications (e.g. lists of channels or EPG search results). Many of these collections have identical semantics, and so for
the sake of brevity, the following notation is used to define these collections.

Each collection is an instance of the Collection<T> parameterized class (see Section K.1.1), and is defined in the
following way:

typedef Collection<Foo> FooCollection
typedef Collection<Bar> BarCollection

where Foo or Bar is the name of the class that may be stored in the collection. For example:

typedef Collection<String> StringCollection
typedef Collection<Channel> ChannelList

Collections defined in this way SHALL follow the semantics defined in Section K.1.1, and may be extended with
additional properties and methods as necessary.

Collections defined in this way always represent snapshots of the state of the OITF at a given time. They are not updated
automatically if the state of the OITF changes. This means that different instances of a specific type of collection may
contain different values.

K.1.1 The Collection template
The Collection<T> class is a parameterized class whose instances are (possibly zero-length) collections of values of
type T. The properties and methods defined below SHALL be present on any instance of a Collection<T> class.
Instances of a Collection<T> class SHALL support the use of array notation to access objects in the collection.

Instances of a Collection<T> class SHALL be considered to be immutable, except by APIs defined on the collection.
Attempts to insert items into instances of a Collection<T> class using array notation SHALL fail.

11.4.1.1 K.1.1.2 Properties

readonly Integer lengthlengthlengthlength

The number of items in the collection

11.4.1.2 K.1.1.2 Methods

<T> itemitemitemitem(Integer index)

Description Return the item at position index in the collection, or undefined if no item is present at that
position.

Arguments index The index of the item that SHALL be returned

Page 353 (356)

 Copyright 2010 © Open IPTV Forum e.V.

Annex L. SVG Video Tag Support
This section provides a comparison between SVG <video> and the visual objects defined in this specification. When not
supported by SVG it is indicated with NS (Not Supported). When not in the scope of SVG it is indicated with NA (Not
Applicable). If there are differences in values or behavior additional information is provided under the Comments
column.

 A/V Control Object Broadcast object SVG IDL
attributes

Comments

General Number width Integer width Video element:
width attribute

Number height Integer height Video element:
height attribute

readonly Boolean fullScreen readonly Boolean fullScreen Video element:

 viewbox
attribute

setFullScreen (Boolean
fullscreen)

void setFullScreen(Boolean
fullscreen)

Video element:

viewbox attribute

focus () NS

Object onfocus function onfocus DOM2 Event
Model:
DOMFocusIn

Object onblur function onblur DOM2 Event
Model:
DOMFocusOut

Object onFullScreenChange function onFullScreenChange NS

Volume Boolean setVolume(Number
volume)

Boolean setVolume(Integer
volume)

Audio element:
audio-level
attribute

The range
specified in
SVG is 0 to 1.0
with 0
silencing the
audio.

 Integer getVolume()

Components
(ex. subtitles,
languages)

AVComponentCollection
getComponents(Integer
componentType)

AVComponentCollection
getComponents(Integer
componentType)

audioLanguage =
‘auto’ | <list-of-
language-ids>

subtitleLanguage
= ‘auto’ | <list-
of-language-ids>

audioType =
‘auto’ | ‘normal’ |
‘descriptive’

subtitleType =
‘auto’ | ‘normal’ |
‘hearingImpaired’

Page 354 (356)

 Copyright 2010 © Open IPTV Forum e.V.

| ‘none’

teletextType =
‘auto’ | ‘normal’ |
‘none’

AVComponentCollection
getCurrentActiveComponents(
Integer componentType)

AVComponentCollection
getCurrentActiveComponents(
Integer componentType)

void selectComponent(
AVComponent component)

void selectComponent(
AVComponent component)

void unselectComponent(
AVComponent component)

void unselectComponent(
AVComponent component)

Broadcast
specific

 function
onChannelChangeError(
Channel channel, Number
errorState)

NA

 Integer playState NA

 function onPlayStateChange(
Number state, Number error)

NA

 Channel
bindToCurrentChannel()

NA

 void setChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL
)

NA

 void prevChannel() NA

 void nextChannel() NA

 void release() NA

 void setChannel(Channel
channel, Boolean trickplay,
String
contentAccessDescriptorURL,
Integer offset)

NA

 readonly Channel
currentChannel

NA

Playback
control

String data Video element:
xlink:href
attribute

readonly Number playPosition readonly Integer playPosition NS

readonly Number playTime NS

readonly Number playState NS

Page 355 (356)

 Copyright 2010 © Open IPTV Forum e.V.

readonly Number error

readonly Number speed readonly Number playSpeed NS

Boolean play (Number speed
)

Boolean resume()

Boolean pause()

Media element:
pause/resume
attributes

SMIL: speed
attribute

 Boolean setSpeed(Number
speed)

NA

Boolean stop () void stopRecording() Media element:
end attribute

stopRecording is
NA

 Boolean stopTimeshift() NA

Boolean seek (Number pos) Boolean seek(Integer offset,
Integer reference)

Media element:
begin attribute

Boolean next () NS

Boolean previous () NS

function
onPlaySpeedChanged(
Number speed)

function
onPlaySpeedChanged(
Number speed)

NS

script
onPlayPositionChanged(
Integer position)

function
onPlayPositionChanged(
Integer position)

NS

readonly Number playSpeeds[
]

readonly Number playSpeeds[
]

NS

readonly String
oitfSourceIPAddress

 NA

readonly String
oitfSourcePortAddress

 NA

Boolean
oitfNoRTSPSessionControl

 NA

String oitfRTSPSessionId NA

Recording
specific

 String recordNow(Integer
duration)

NA

 readonly Integer
playbackOffset

NA

 readonly Integer maxOffset NA

 readonly Integer
recordingState

NA

Page 356 (356)

 Copyright 2010 © Open IPTV Forum e.V.

 function onRecordingEvent NA

 readonly Integer state NA

 readonly Integer error NA

 readonly String recordingId NA

