

© Smart TV Alliance, Inc. 2014
All rights are reserved. Reproduction or transmission in whole or in part, in any form or by any means,
electronic, mechanical or otherwise, is prohibited without the prior written consent of the copyright owner

Smart Home
Technical Specification

Version 1.0

Status: Final
Version: 1.0
Date: 4th September 2014
Author: Smart TV Alliance, Inc.
Category: Released

- 2 -

CONTENTS

 INTRODUCTION .. 4

 OVERVIEW .. 4
 DEFINITIONS .. 4
 REFERENCES .. 4
 TRADEMARKS AND COPYRIGHTS ... 5

 TECHNICAL SPECIFICATION .. 6

 INTRODUCTION .. 6
 DISCOVERY ... 7
 SSDP ... 8
 ZEROCONF (MDNS+DNS-SD) ... 9
 CONNECTION .. 10
 TRANSPORT PROTOCOL: SIMPLE VARIANT .. 10
 TRANSPORT PROTOCOL: OBIX VARIANT .. 12
 ORTHOGONAL COMPONENT: SECURITY .. 12

 DATA MODEL.. 14

 DEVICE CONTRACT .. 15
 AIRCONDITIONER CONTRACT ... 15
 REFRIGERATOR CONTRACT ... 16
 WASHER CONTRACT .. 17
 DRYER CONTRACT .. 18
 WASHERDRYER CONTRACT ... 18
 CLEANER CONTRACT ... 18
 LIGHT CONTRACT .. 18

 STASH JAVASCRIPT INTERFACE .. 20

 MAIN METHODS AND PROPERTIES ... 20
 ENDPOINT OBJECT METHODS AND PROPERTIES ... 20
 DEVICE OBJECT METHODS AND PROPERTIES ... 21
 PROPERTY OBJECT PROPERTIES .. 21
 DEVICE CLASSES .. 21

ANNEX A. USE CASE: DISCOVERY... 22

ANNEX B. USE CASE: NOTIFICATION .. 23

ANNEX C. USE CASE: MONITORING .. 24

ANNEX D. USE CASE: CONTROL .. 25

ANNEX E. MESSAGE FORMAT EXAMPLES: SIMPLE VARIANT .. 26

ANNEX F. MESSAGE FORMAT EXAMPLES: OBIX VARIANT ... 28

ANNEX G. STASH JAVASCRIPT LIBRARY EXAMPLE... 38

- 3 -

Change History

Version Date Changes

1.0 2014-09-04 Final version 1.0 for publication

- 4 -

 Introduction

 Overview

This document sets out version 1.0 of the Smart TV Alliance Smart Home specification. It is intended
primarily for manufacturers but also for application developers, and describes the common technical
features in the form of a data model and common transport protocol. Version 1.0 of the specification is
focused on four basic functional use cases of appliances and gateways in the local area network:

 Discover appliances in the local area network within an application running on a Smart TV

 Monitoring appliances from an application running on a Smart TV

 Controlling appliances from an application running on a Smart TV

 Notification from appliances to an application running on a Smart TV

These basic functional use cases enable applications to create business use cases, as these basic
functionalities can be freely composed together as needed.

Smart TV Alliance will also release a Software Development Kit and developer documentation. This will
provide a user-friendly environment for developers to create Smart Home applications that run on Smart TV
Alliance platform.

While a lot of care has been taken to ensure the correctness of the information in this document, errors
cannot be completely prevented. The latest version of this document, with possible corrections, is always
available online. If you have questions and/or remarks regarding these guidelines, please post them through
the designated support channels.

 Definitions

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
mDNS Multicast Domain Name System
HTML Hypertext Markup Language
HTTP(S)
JSON

Hypertext Transport Protocol (Secure)
JavaScript Object Notation

OBIX Open Building Information Exchange
SSDP Simple Service Discovery Protocol
UPnP Universal Plug and Play
WS(S) WebSocket (Secure)
XML
Zeroconf

Extensible Markup Language
Zero Configuration Networking

 References

[1] Smart TV Alliance Specification Version 4
https://developers.smarttv-alliance.org/specification

[2] HTML5 Working Draft 29 March 2012
http://www.w3.org/TR/2012/WD-html5-20120329/

[3] W3C Network Service Discovery API
http://www.w3.org/TR/2013/WD-discovery-api-20130404/#service-discovery

[4] Bindings for OBIX: Web Socket Bindings Version 1.0
http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html

[5] The application/json Media Type for JavaScript Object Notation (JSON), July 2006
http://tools.ietf.org/html/rfc4627

[6] HTML5 WebSockets – Candidate Recommendation September 2012
http://www.w3.org/TR/2012/CR-websockets-20120920/

https://developers.smarttv-alliance.org/specification
http://www.w3.org/TR/2012/WD-html5-20120329/
http://www.w3.org/TR/2013/WD-discovery-api-20130404/#service-discovery
http://docs.oasis-open.org/obix/obix-websocket/v1.0/obix-websocket-v1.0.html
http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/2012/CR-websockets-20120920/

- 5 -

[7] RFC2782
https://www.ietf.org/rfc/rfc2782.txt

[8] RFC1035
https://www.ietf.org/rfc/rfc1035.txt

[9] RFC5198
https://www.ietf.org/rfc/rfc5198.txt

[10] RFC6763
https://www.ietf.org/rfc/rfc6763.txt

[11] RFC6762
https://www.ietf.org/rfc/rfc6762.txt

 Trademarks and copyrights

All trademarks and copyrights are the property of their respective owners.

https://www.ietf.org/rfc/rfc2782.txt
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc5198.txt
https://www.ietf.org/rfc/rfc6763.txt
https://www.ietf.org/rfc/rfc6762.txt

- 6 -

 Technical Specification

 Introduction

This version of the specification contains standardization for an application running on a TV and how it can
discover home appliances as well as receive and send data to them. It does explicitly not contain any
standardization regarding how an application and an appliance connect itself to a cloud infrastructure.

Following entities are considered in this specification:

 Application: an HTML5 Smart TV application compatible with Smart TV Alliance technical
specifications [1] running on a Smart TV

 Home appliance/device: a smart appliance which is capable to run a server component and can be
addressed within a home area network

 Home Gateway: a component which abstracts various devices using non-IP or proprietary
connection methods, e.g. ECHONET Lite

1
, EnOcean

2
 or ZigBee

3
 devices, and exposes them over

an IP network, it is usually located in a private home and connected to a home area network that is
connected to the internet via broadband gateway

 Cloud Server: a component located in a data center and reachable via the internet

 Common Interface: a protocol definition which abstracts a generic home appliance/device concept
and provides methods to control, monitor and notification, optionally it also provides a discovery
mechanism

 Endpoint: abstract notion of an home appliance/device, a TV, a home gateway or a cloud server
implementing the common interface

There are three communication paths to look at in respect of this specification:

 Application (on a Smart TV) to home appliance/device using home network connection like
Ethernet/Wi-Fi

 Application (on a Smart TV) to home gateway using home network like Ethernet/Wi-Fi

 Application (on a Smart TV) to cloud server in the cloud through broadband gateway

All of these will have a common interface and they are all providing an endpoint for WebSocket [6]
connections. See Figure 1 below:

1
 http://www.echonet.gr.jp/english/

2
 http://www.enocean-alliance.org/

3
 http://www.zigbee.org/

http://www.echonet.gr.jp/english/
http://www.enocean-alliance.org/
http://www.zigbee.org/

- 7 -

The home appliances/devices and gateways implement a common interface, which is a WebSocket server
interacting with the protocol defined below. For implementation, an endpoint can chose which protocol
version it will implement. An endpoint can also support discovery in the local area network.

 Discovery

In this section it is described how an application can detect home appliances/devices within the local area
network using standard technologies. There are some assumptions for the discovery as this is done within
the application running on a TV:

 Prerequisite is that the browser supports a technology like Network Service Discovery API [3], which
is a part of TV device specification [1]

 The user initiates / allows the search for home appliances/devices

For the Discovery mechanism, SSDP and Zeroconf on the device layer can be used. The discovery via
SSDP and Zeroconf is optional to conform to this specification.

Figure 1 Smart TV Alliance Smart Home Architectural Overview

- 8 -

 SSDP

Appliances/devices supporting WebSocket Server can be discovered by SSDP. The client can get
WebSocket Server URL via M-SEARCH request according to the following procedure.

Figure 2 Device Discovery Mechanism using SSDP

Please note that the references to UPnP do not imply that an entire UPnP stack is required to support
STASH device discovery specification. Only the SSDP portion of UPnP is required.

Device discovery based on SSDP consists of three messages:

1. Discovery request message (M-SEARCH)
Appliances that support this specification can be discovered through the SSDP M-SEARCH method.
The search target header should be

ST: urn:smarttv-alliance-org:service:smarthome:<Device Contract>:<STASH Spec Version>

All multicast messages are sent to the reserved address and port 239.255.255.250:1900, which is a
default multicast address and port for UPnP specification.

To enhance readability, “-” is used instead of “.” in the value of URN.

<Device Contract> refers to the devices that clients want to discover. If clients want to discover air
conditioners only, <Device Contract> should be “sta:AirConditioner.” If clients want to discover all
the compatible appliances in the network, <Device Contract> should be “sta:Device.” In this version
of specification, clients can use these kinds of <Device Contract>:
- sta:Device
- sta:AirConditioner
- sta:Refrigerator
- sta:Washer
- sta:Dryer
- sta:WasherDryer
- sta:Cleaner
- sta:Light

<STASH Spec Version> refers to the version of the STASH specification.

M-SEARCH * HTTP/1.1

HOST: 239.255.255.250:1900

MAN: “ssdp:discover”

MX: <seconds to delay response e.g., 3>

ST: urn:smarttv-alliance-org:service:smarthome:<Device Contract>:<STASH Spec Version>

USER-AGENT: OS/version product/version

2. Discovery response message

- 9 -

Appliances/devices that support this specification will respond with a unicast response with IP
address and port of an appropriate WebSocket server. The value of ST header is same with the one
in the M-SEARCH request. The value of encoding parameter refers to the preferred message format
and version for the device and the value of version refers to the version of the preferred message
format, see section 3.4 and 3.5 below. The unique service name can be delivered through the value
of USN header.

HTTP/1.1 200 OK

LOCATION:wss://<websocket-server-host>:<websocket-port>?encoding=<simple/obix>&version=<message format version>

CACHE-CONTROL: max-age= <seconds until advertisement expires e.g., 1800>

EXT:

SERVER: OS/version UPnP/1.0 product/version

ST: urn:smarttv-alliance-org:service:smarthome:<Device Contract>:<STASH Spec Version>

USN: <Unique Service Name>

3. Notify message

When an appliance/device is added to the network, NOTIFY discovery message can be used to
advertise itself. The value of NT (Notification Type) header must be same with Search Target of M-
SEARCH request message.

NOTIFY * HTTP/1.1

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age= <seconds until advertisement expires e.g., 1800>

LOCATION:wss://<websocket-server-host>:<websocket-port>?encoding=<simple/obix>&version=<message format version>

NT: urn:smarttv-alliance-org:service:smarthome:<Device Contract>:<STASH Spec Version>

NTS: ssdp:alive

SERVER: OS/version UPnP/1.0 product/version

USN: <Unique Service Name>

 Zeroconf (mDNS+DNS-SD)

Appliances/devices supporting WebSocket Server can be discovered by using complementary standards
mDNS and DNS-SD. In small networks, such as home networks, mDNS can be used for the name
resolution and DNS-SD can be used to allow clients to discover the services by type using standard DNS
queries.
A particular service instance can be described by using a DNS SRV [7] and DNS TXT [8] record. A client
discovers the list of available instances of a given service type using a query for a DNS PTR [8] record with
a name of the form "<servicename>.<servicedomain>". This returns a set of instances (if available), which
contains DNS SRV/TXT record pairs.

a) The DNS SRV record:

PTR Service Instance Name: "<Instance>.<servicename>.<servicedomain>.<parentdomain>."
<Instance>: User-friendly name consisting of arbitrary Net-Unicode text [9]. e.g.: MyFridge (may be
up to 63 bytes [10])
<servicename>: _smarthome._<Device Contract>._tcp
<Device Contract>: refers to the devices that clients want to discover. In this version of
specification, clients can use the following kinds of <Device Contract>:

- AirConditioner
- Refrigerator
- Washer
- Dryer
- WasherDryer
- Cleaner
- Light

<servicedomain>: smarttv-alliance-org

- 10 -

<parentdomain>: .local.

b) The key/value pairs in DNS TXT record should be

encoding=<simple/obix>

version=<message format version>

Whenever an mDNS responder starts up, it sends a Multicast DNS query to probe the network for the
service resource conflicts. After being sure that there is no conflict of resources it announces its services in
order to notify the others [11].

Figure 3 Device Discovery Mechanism using mDNS

 Connection

To establish a connection to the appliance, a client needs to connect to the URL using the WebSocket
protocol. A WebSocket connection is established with first establishing an HTTP connection and then doing
a change to the WebSocket protocol.

The discovered URL should contain a query parameter called "encoding" to denote which transport protocol
variant the endpoint supports. The value can be either "simple" or "obix" referring to the two variants
described below.

 Transport Protocol: Simple Variant

The "Simple" transport protocol defines a message format and operations on top of the WebSocket protocol.
This protocol is designed for home appliances/devices that have only limited resources. The operations can
be used after successfully having established a WebSocket session. The JSON data format is used as data
format, see [5].

The current value of <message format version> is v1. If there are any updates of message format, the exact
version number will be specified in the tables below.

 Transaction Message Format

In each message, there are fields containing header information and a payload field containing the request,
response, notification or error data:

Name Type Description

type String Is either "request", "response", “notify” or "error"

tid Integer Transaction id to correlate the requests

Range: 0-99 0 is reserved for notify / error type

payload JSON Object Contains the request, response, notification or error data

 Device Message Format

Below is a JSON object model for a device:

- 11 -

Name Type Description

deviceId String Unique ID to identify a home appliance/device. ASCII and less than 256
characters.

is String Device class (e.g. “AirConditioner”) as found in the data model section below

displayName String Appliance/device name (end-user readable and editable), UTF-8 and less than
32 characters.

location String Place name (end-user readable and editable), UTF-8 and less than 32
characters.

status JSON
Object

Pairs of property name and value

writable String array Name of writable properties

vendorCode String Vendor identifier

 Operations

Following operations issued from the client to the server are supported:

Get devices

Request: JSON object containing "getDevices" property in the payload object. The "getDevices" property
can be null or the exact deviceId as string.

Response: JSON object containing "devices". The "devices" property is a JSON array of device as defined
above.

Set status properties

Request: JSON object containing "deviceId" and "setStatus" property in the payload object. The "deviceId"
denotes the unique identifier of the device, "setStatus" is a JSON object containing property name and
value.

Response: JSON object containing "deviceId" and "accepted". The "deviceId" denotes the unique identifier
of the device, "accepted" is a JSON array containing the property names of which the status change was
executed.

Get status properties

Request: JSON object containing "deviceId" and "getStatus" in the payload object. The "deviceId" denotes
the unique identifier of the device, "getStatus" is a JSON array containing the status property names which
are requested – it can be empty to retrieve all properties.

Response: JSON object containing "deviceId" and "status". The "deviceId" denotes the unique identifier of
the device, "status" is a JSON object containing property name value.

Set device attributes

Request: JSON object containing "deviceId" and "setAttributes" in the payload object. The "deviceId"
denotes the unique identifier of the device, "setAttributes" is a JSON object containing the attribute names
and values to be updated.

Response: JSON object containing "deviceId" and "accepted". The "deviceId" denotes the unique identifier
of the device, "accepted" is a JSON array containing the attribute names of which the status change was
executed.

- 12 -

Get device attributes

Request: JSON object containing "deviceId" and "getAttributes" in the payload object. The "deviceId"
denotes the unique identifier of the device, "getAttributes" is a JSON array containing the attribute names
which are requested – it can be empty to retrieve all attributes.

Response: JSON object containing "deviceId" and "attributes". The "deviceId" denotes the unique identifier
of the device, "attributes" is a JSON object containing property name value.

Notification and error reporting

Notify: JSON object containing "deviceId" and "message" in the payload object. The "deviceId" denotes the
unique identifier of the device, "message" is a JSON object containing text of what the device wants to notify
a client.

Error: JSON object containing "deviceId" and "error" or "errorStatus". The "deviceId" denotes the unique
identifier of the device, "error" is a JSON object containing text describing the error. "errorStatus" is a JSON
object containing a value of error code.

 Vendor Dependent Extension

If a vendor wants to add a new type of home appliance/device, additional definitions of Device class,
attributes and values are available for this Simple Transport Protocol. It is preferable for a server and client
to ignore unknown Device class, attributes and values.

 Transport Protocol: OBIX Variant

The OBIX transport protocol is specified in [4]. After establishing a WebSocket connection the server returns
the OBIX Lobby object and then it can be navigated from there.

The current value of <message format version> is v1. If there are any updates of message format, the exact
version number will be specified in the tables below.

The server need not to comply fully as OBIX Server supporting WebSocket, but it must comply with
following:

 After successful establishment of a connection it must respond with the OBIX Lobby object

 A "device" object with the obix:href must be specified to denote all the home appliances/devices

 The home appliances/devices themselves are obix:obj and the obix:is facet denotes the class name
from the data model defined below

 The obix:Read and obix:Write must be supported for the device obix:obj

 The contracts for the devices must comply with the given contracts in this specification

Additionally, the server may provide a WatchServer to receive updates continuously. For the notification use
case there is no separate message type but it is handled as obix:Update message and pushed using the
WatchService.

 Orthogonal Component: Security

Security consists of three parts: transport layer security, authentication and authorization. All of them are
considered within the specification and they are defined what level of support is required to comply with this
specification.
In addition, home appliances/devices may support CORS, see section 3.3.2.3 in [1].

 Transport Layer Security

A server component implementing the common interface is recommended to support secure WebSocket
wss:// connections.

- 13 -

 Authentication

A server component implementing the common interfaces may support authentication with username and
password (usually referred to as “Basic Authentication”) or client certificates.

 Authorization

Each home appliance/device may have two levels of authorization:

 on the device level, defined by manufacturers: read/update (this disallows/allows an application to
read properties of the home appliance/device or update the home appliance/device using
capabilities)

 on the properties/capabilities level, defined by applications: read/update (this disallows/allows a user
to read or update a home appliance/device)

For that the endpoint needs to support authorization and provides e.g. a role-based authorization framework
(which is usually not a single appliance but a gateway or the cloud). The common interface does not require
the integration of such an authorization framework but it strongly recommends that the appliance/device
itself supports this.
For example, it could be an appliance-based mode where the access credentials for remote access can be
directly set on the display on the device or a cloud-based approach where the credentials can be set on the
cloud and then get pushed back to the appliance.

- 14 -

 Data Model
OBIX [4] uses the notion of a contract to group a set of properties; this concept is also used in this
specification. The contracts defined below are specified to have a common data model among the CE
manufacturers and must be supported by compliant endpoints. These contracts define the basic set of
properties and operations, but as the object structure itself is not restricted additional vendor specific
properties and operations can be used ad libitum. A contract inherits its parent contract properties and
operations and thus it is a device type hierarchy on contracts built.

The data model comprises the contract hierarchy as well as the contract definition with properties and
operations. Please find in the figure 4 below, a graphical overview of the defined contracts, the details
regarding mandatory and optional attributes are described further below:

Figure 4 Device Type Hierarchy

Remarks regarding the contract definitions below:

 The type of a property can be the simple type “Boolean”, “String”, “Integer”, “Double”. There is also a
more complex type specified, called “String Value List”, which means the “display” attribute contains
the possible values as colon separated string list and the value attribute itself contains the index of
the selected value within the list (starting at 0). The “String Value List” type could change in future
versions.

 Empty or unavailable properties can be omitted completely to save transmission data.

 If “Values” contains a numeric range, set as “min” and “max” attribute, this also easily allows home
appliance/device or vendor specific ranges

 An asterisk “*” marks that the property and the value of this property must be present

 Other properties are optional

For examples of the JSON messages in the various transport protocol encodings see the annex.

- 15 -

 Device Contract

Device denotes that this entry is a device; it is the top-level element in the hierarchy.

Property Type Writeable Values Unit

status* Boolean (vendor and device
type specific)

true / false -

Denotes that the status of the device, if it is switched on or off

name* String (vendor and device
type specific)

text (255 chars)

Name of the device, unique at least within the application. Encoded in ASCII.

displayName String true text (255 chars)

Localized name of the device. Encoded in UTF-8.

location* String (vendor specific) text (255 chars)

User specified name of the location the device is in. Encoded in UTF-8

layoutHint String False Text (? chars)

A layout hint given by the device how to render it

Power Integer False W

Instantaneous power consumption

Energy Integer False Wh

Cumulative power consumption

operational Boolean False true / false

Denotes that the device can be used and is in a controllable state, it can be omitted if value is “true”

Error String False text (255 chars)

Textual description if error is present (i.e. operational == false)

errorStatus Integer False If no error is
present, this is -1

Denotes an integer value for machine processing in case of an error (HTTP Status Codes can be reused)

powerSavingMode Boolean (vendor specific) true / false

Denotes if the device is in power saving mode

Message String false text (2048 chars)

Content of an end-user notification message, containing title and message text, can be formatted

messageStatus Integer false

HTTP Status Code

vendorCode* String false text (255 chars)

Company name

 AirConditioner Contract

Contract Hierarchy: “sta:AirConditioner” → “sta:Device”

Property Type Writeable Values Unit

operationMode* String Value read (optional: true) Basic values: -

- 16 -

List ”Automatic”: 0x01,
”Cooling”: 0x02,
”Heating”: 0x03,
“Drying”: 0x04,
“Ventilating”: 0x05
other values are
possible but vendor
specific

Denotes the air conditioners operation mode

roomTemperature Integer false -127 to 125 °C or °F

Denotes the current room temperature

targetTemperature* Integer true 0 to 50 °C or °F

Denotes the target temperature

outsideTemperature Integer false -127 to 125 °C or °F

Denotes the outside temperature

fanSpeed String Value
List

(vendor specific) Basic values: “Low”:
1, “Medium”: 2,
“High”: 3,
"Automatic": 4,
other values are
possible but vendor
specific

Denotes the speed of the fan

fanDirectionVertical Boolean (vendor specific) true / false -

Denotes if the fan moves vertical

fanDirectionHorizontal Boolean (vendor specific) true / false -

Denotes if the fan moves horizontal

powerOnTime Integer (vendor specific) 0000 to 2359 HHmm

An optional property denoting when to power on the air conditioner specified as absolute time

powerOffTime Integer (vendor specific) 0000 to 2359 HHmm

An optional property denoting when to power off the air conditioner specified as absolute time

powerOnOffset Integer (vendor specific) 0000 to 2359 HHmm

An optional property denoting when to power on the air conditioner specified as relative time

powerOffOffset Integer (vendor specific) 0000 to 2359 HHmm

An optional property denoting when to power off the air conditioner specified as relative time

 Refrigerator Contract

Contract Hierarchy: “sta:Refrigerator” → “sta:Device”

Property Type Writeable Values Unit

targetTemperature* Double (vendor
specific)

0.0 to 10.0 °C

Property to denote the refrigerator compartment target temperature

compartment### Double (vendor -50.0 to 50.0

- 17 -

specific)

Property to denote the compartment target temperature, a display name can be used to describe the
compartment. ### denotes the compartment number.

mode String
Value List

true Not predefined, could be
"Turned off" : 0, "Power
mode": 1, "Standby": 2,
"Eco mode": 3

Returns all modes the refrigerator supports within the “values” attribute

iceMakerEnabled Boolean false true / false

Returns true if the ice maker is available and enabled

iceMakerStatus String
Value List

false Basic values: “No water
in tank”: 0, “Water in
tank”: 1

Returns the status of the ice maker

doorStatus Boolean false true / false

Returns true if the door is open and false if closed

 Washer Contract

Contract Hierarchy: “sta:Washer” → “sta:Device”

Property Type Writeable Values Unit

powerState String Value List false Not predefined, could be: On:
0, Off: 1, Standby: 2

Denotes the power state of the washing machine

washingStage String Value List false Not predefined, could be:
None: 0, Washing: 1, Rinsing:
2: Spinning: 3, Drying: 4,
Completed: 5

Denotes the current washing stage

operationState String Value List (vendor specific) Basic values: “Idle”: 0,
"Progress" : 1, “Suspended”: 2,
“Completed”: 3

Denotes the operation of the washing machine

washingProgram String Value List (vendor specific) Not predefined, could be
“Weak”, “Normal”, “Strong” or a
program like “Jeans”,
“Colored”, ...

Denotes the strength or type of the selected washing mode

spinSpeed String Value List false Not predefined, could be
“Weak”, “Normal”, “Strong”,
“Off” or “0”, “1000”, “1200”, etc.

Denotes the speed of spin

rinsingMode String Value List false

Denotes the strength level of rinsing

remainingTime* Integer false Hours and minutes HHmm

Denotes the remaining washing time

- 18 -

 Dryer Contract

Contract Hierarchy: “sta:Dryer” → “sta:Device”

Property Type Writeable Values Unit

powerState String Value List (vendor specific) Not predefined, could be: On:
0, Off: 1, Standby: 2

Denotes the power state of the washing machine

dryingProgram String Value List (vendor specific)

Denotes the strength or type of the selected drying mode

dryingStage String Value List false Not predefined, could be:
None: 0, Drying: 1

Denotes the current drying stage

remainingTime Integer false Hours and minutes HHmm

Denotes the remaining washing time

operationState String Value List (vendor specific) Basic values: “Idle”: 0,
“Suspended”: 1, “Drying in
progress”: 2, “Finished”: 3

Denotes the operation of the dryer

 WasherDryer Contract

Contract Hierarchy: “sta:WasherDryer” → “sta:Washer”, "sta:Dryer"

Stage property does not have pre-defined values and differs from Washer and Dryer contract.

No additional properties or operations

 Cleaner Contract

Contract Hierarchy: "sta:Cleaner" → "sta:Device"

Property Type Writeable Values Unit

operationState String Value List true Basic values:
“Start”:0,“Homing”:1, “Stop”:2,
“Charging”:3

Denotes the operation state of the robot cleaner

batteryState String Value List false Basic values: “Low”:0,
“Middle”:1, “High”:2

Denotes the battery state of robot cleaner

cleaningMode String Value List true Not predefined, could be:
“Manual”:0, “Spot”:1,
“ZigZag”:2, “CellByCell”:3

Denotes the cleaning mode of robot cleaner

 Light Contract

Contract Hierarchy: “sta:Light” → "sta:Device"

- 19 -

Property Type Writeable Values Unit

dimmingLevel Integer (vendor specific) 0 to 100 %

Denotes the level of dimming if supported

colorSpace String (vendor specific) Default is "RGB"

Denotes the color space which is used (usually RGB)

color Integer (vendor specific) In RGB (0,0,0) to
(255,255,255)

Denotes the color the light currently has

powerOnTime Integer true Hours and minutes HHmm

Denotes the on timer

powerOffTime Integer true Hours and minutes HHmm

Denotes the off timer

- 20 -

 STASH JavaScript Interface
A JavaScript interface is defined ease application development and to abstract the transport protocol
variants defined in this specification. Please find the architectural overview inError! Reference source not
found. Figure 5 below.

Figure 5 JavaScript Library Architecture

In the following public methods, properties and classes are defined, for examples see Annex G. STASH
JavaScript Library Example.

 Main methods and properties

Methods:

 addEndpoint(name, endpointAddress): creates a new endpoint with the given name and address,
does return the endpoint object

 getEndpoints(): returns an array of all endpoint objects

 getEndpoint(name): returns the endpoint object with the given name or null

 removeEndpoint(name): removes the endpoint object with the given name if it does exist

 getDevices(): returns an array of device objects from all endpoints

 discoverEndpoints(): returns a list of discovered endpoints, these can be added to the endpoint list
with addEndpoint

Properties:

 version: String which contains the version of the current library

 debug: Boolean which can be set to "true" to debug the library, defaults to false

 Endpoint object methods and properties

Methods:

 connect(): connects to this endpoint

 disconnect(): disconnects from this endpoint

 poll(): retrieves the device list if polling is supported

 getDevices(): returns an array of device objects

 setProperty(name, propName, value): sets the property with name "propName" of a device with
name "name" to the value specified in "value"

- 21 -

 Device object methods and properties

Methods:

 setProperty(propName, value): sets the value of the property specified by "propName" to the given

Properties:

 name: String which denotes the name (unique attribute) of the device, needs to be set

 is: String which denotes the type of the device as specified in the data model (e.g.
"sta:AirConditioner"), needs to be set

 location: String which denotes the location, can be empty

 properties: Array of Property objects (can be of String, Int, Bool, Real subclass)

 Property object properties

Properties:

 name: String which denotes the name (unique attribute)

 value: Object which denotes the value

 display: if a display is set a String of possible displays for this attributes (especially important for
integer values)

 writable: Boolean which is set to true if the property can be set, false else

 min: Object which denotes the minimum possible value, is optional and therefore can be null

 max: Object which denotes the maximum possible value, is optional and therefore can be null

 unit: String which denotes the unit (e.g. "°C")

 Device Classes

Following device classes are implemented:

 Device: this is the base device class

 AirConditioner: for the contract "sta:AirConditioner"

 Washer: for the contract "sta:Washer"

 Dryer: for the contract "sta:Dryer"

 WasherDryer: for the contract "sta:WasherDryer"

 Refrigerator: for the contract "sta:Refrigerator"

 Light: for the contract "sta:Light"

 Cleaner: for the contract “sta:Cleaner”

- 22 -

Annex A. Use Case: Discovery
On a television, a user may want to get notified from nearby home appliances/devices, to monitor and
control them. To support those use cases, home appliances/devices should be able to be discovered first.
For this version of specification, following discovery use cases can be supported:

 If a home appliance/device is connected to the network, it advertises itself to the nearby devices that
it supports Smart TV Alliance Smart Home specification

 An application on a TV can search for Smart TV Alliance Smart Home specification compatible
devices among nearby devices

- 23 -

Annex B. Use Case: Notification
On a television a user wants to get notified on important or urgent events from the home appliances/devices
in the home. Following notification model is stated:

 A home appliance/device can emit notifications which are directly pushed to connected clients

 A home appliance/device can store notifications for an arbitrary timeframe to allow newly connecting
clients to receive this notification

 A notification may contain following content:
o Title
o Message

While the application is running, incoming notifications can be displayed, which means this version of
specification only supports in-app notifications.

- 24 -

Annex C. Use Case: Monitoring
In this section, it is described how an application can retrieve and fetch data from a home appliance/device.
The client can use polling or, if the endpoint supports pushing updates, it can retrieve data continuously.
Following steps need to be executed:

1. Open a WebSocket connection to the endpoint. The endpoint URLs can be discovered by the
method in Section 2.2.

2. For the two protocols, there is a different handling of monitoring home appliances/devices:
1. The Simple variant in Section 2.4 allows polling to retrieve the latest home appliance/device

information
2. The OBIX variant in Section 2.5 allows update messages to be pushed from the endpoint to the

client once the state on the endpoint does change using the concept of watches
3. Close WebSocket connection if no other request will be made or if listening is no longer required. To

prevent early closes by the default WebSocket server time (usually 30s), empty packets can be
sent.

Figure 6 Monitoring Use Case Flow

- 25 -

Annex D. Use Case: Control
In this section it is specified how an application can control a home appliance/device. To send control
messages for a home appliance/device to the server endpoint, providing access to this home
appliance/device a client must execute following steps:

 Open a WebSocket connection to the endpoint. The endpoint URLs can be discovered by the
method in section 2.2.

 To control a device, a JSON formatted message needs to be send adhering to the protocol variant
the endpoint supports. For example, using the OBIX variant there must be an OBIX message sent
over the WebSocket session containing the unique identifier of the device to control (like
“/device/WashingMachineBasement”) and the new state of a property or an operation to trigger an
update of the home appliance/device.

 Close WebSocket connection if no other request will be made.

Figure 7 Control Use Case Flow

Note: Multiple monitoring and control messages can be sent during a single WebSocket connection.

- 26 -

Annex E. Message Format Examples: Simple Variant

Below a message exchange example is given:

Client Server

Client initiates action on its own timing
Connect to WebSocket server: wss://myhome?encoding=simple



X
No response on successful connection

Client Server

Client initiates action on its own timing

{

 "type": "request",

 "tid" : 1,

 "payload" : {

 "getDevices": null

 }

}





Server sends message in response to request from Client
{
 "type": "response",
 "tid" : 1,
 "payload" : {
 "devices": [
 {
 "deviceId": "abc123",
 "is": "AirConditioner",
 "vendorCode": "foo",
 "displayName": "My AirConditioner",
 "location": "Living Room"
 }
]
 }
}

Client Server

Client initiates action on its own timing

{

 "type": "request",

 "tid" : 2,

 "payload" : {

 "deviceId": "abc123",

 "getAttributes": [

 "status",

 "targetTemperature"

]

 }

}





Server sends message in response to request from Client
{
 "type": "response",
 "tid" : 2,
 "payload" : {

- 27 -

 "deviceId": "abc123",
 "attributes": {
 "status": false,
 "targetTemperature": 28
 }
 }
}

Client Server

Client initiates action on its own timing

{

 "type": "request",

 "tid" : 3,

 "payload" : {

 "deviceId": "abc123",

 "setAttributes": {

 "status": true

 }

 }

}





Server sends message in response to connection from Client
{
 "type": "response",
 "tid" : 3,
 "payload" : {
 "deviceId": "abc123",
 "accepted": [
 "status"
]
 }
}

Client Server



Server sends message when it has some notifications
{
 "type": "notify",
 "tid" : 0,
 "payload" : {
 "deviceId": "abc123",
 "message": "Please check the air filter. It may need to be cleaned."
 }
}

Client Server



Server sends message when it has some errors
{
 "type": "error",
 "tid" : 0,
 "payload" : {
 "deviceId": "abc123",
 "error": "Please make a phone call to technical support."
 }
}

- 28 -

Annex F. Message Format Examples: OBIX Variant

In this annex sample JSON messages are shown for all appliance types and also for all requests.

 Device Contract (sta:Device):

{
 "obix" : "obj",
 "href" : "/devices/WashingMachineBasement",
 "is" : "sta:Device",
 "location" : "basement",
 "children" : [{
 "obix" : "bool",
 "name" : "operational",
 "value" : "true"
 }]
};

 AirConditioner Contract (sta:AirConditioner):

{
 "obix" : "obj",
 "href" : "/devices/AirConditionerLivingRoom",
 "is" : "sta:AirConditioner",
 "location" : "living room",
 "children" : [
 {
 "obix" : "int",
 "name" : "operationMode",
 "val" : 1,
 "display" : "Something:Automatic:Cooling:Heating:Drying:Ventilating"
 }, {
 "obix" : "int",
 "name" : "fanSpeed",
 "val" : 1,
 "display" : "Weak:Normal:String"
 }, {
 "obix" : "real",
 "name" : "roomTemperature",
 "val" : 25.8,
 "unit" : "obix:units/celsius",
 "min" : -127.0,
 "max" : 125.0
 }, {
 "obix" : "int",
 "name" : "targetTemperature",
 "val" : 22,
 "min" : 0,
 "max" : 50,
 "unit" : "obix:units/celsius"
 }, {
 "obix" : "bool",
 "name" : "status",
 "val" : true
 }, {
 "obix" : "int",
 "name" : "powerOffTime",
 "val" : 2230,
 "min" : 0,
 "max" : 2359
 }]
}

 Refrigerator Contract (sta:Refrigerator):

{
 "obix" : "obj",
 "href" : "/devices/RefrigeratorKitchen",
 "is" : "sta:Refrigerator",

- 29 -

 "location" : "kitchen",
 "children" : [
 {
 "obix" : "real",
 "name" : "targetTemperature",
 "val" : 2.50,
 "min" : 0.0,
 "max" : 10.0,
 "unit" : "obix:units/celsius"
 }, {
 "obix" : "int",
 "name" : "compartment1",
 "val" : -18,
 "min" : -50,
 "max" : 50,
 "unit" : "obix:units/celsius"
 }, {
 "obix" : "int",
 "name" : "mode",
 "val" : 0,
 "display" : "Turned off:Power mode:Standby:Eco mode"
 }, {
 "obix" : "bool",
 "name" : "iceMakerEnabled",
 "val" : false,
 }, {
 "obix" : "int",
 "name" : "iceMakerStatus",
 "val" : 1,
 "display" : "No water in tank:Water in tank"
 }, {
 "obix" : "int",
 "name" : "mode",
 "val" : 0,
 "display" : "Turned off:Power mode:Standby:Eco mode"
 }]
}

 Washer Contract (sta:Washer):

{
 "obix" : "obj",
 "href" : "/devices/WashingMachineBasement",
 "is" : "sta:Washer",
 "location" : "basement",
 "children" : [
 {
 "obix" : "int",
 "name" : "powerState",
 "val" : 1,
 "display" : "Off:On:Standby"
 }, {
 "obix" : "int",
 "name" : "washingStage",
 "val" : 0,
 "display" : "None:Washing:Rinsing:Spinning"
 }, {
 "obix" : "int",
 "name" : "operationState",
 "val" : 0,
 "display" : "Idle:Suspended:Finished"
 }, {
 "obix" : "int",
 "name" : "washingProgram",
 "val" : 0,
 "display" : "None:Wool:Jeans:Colored:Hot wash"
 }, {
 "obix" : "int",
 "name" : "spinSpeed",
 "val" : 0,
 "display" : "0:800:900:1000:1100:1200:1300:1400"
 }, {
 "obix" : "int",

- 30 -

 "name" : "remainingTime",
 "val" : 0,
 "min" : 0,
 "max" : 2359
 }]
}

 Dryer Contract (sta:Dryer):

{
 "obix" : "obj",
 "href" : "/devices/DryerBasement",
 "is" : "sta:Dryer",
 "location" : "basement",
 "children" : [
 {
 "obix" : "int",
 "name" : "powerState",
 "val" : 1,
 "display" : "Off:On:Standby"
 }, {
 "obix" : "int",
 "name" : "operationState",
 "val" : 2,
 "display" : "Idle:Suspended:Drying in progress:Finished"
 }, {
 "obix" : "int",
 "name" : "remainingTime",
 "val" : 40,
 "min" : 0,
 "max" : 2359
 }]
}

 Cleaner Contract (sta:Cleaner):

{
"obix" : "obj",
"href" : "/devices/CleanerBasement",
"is" : "sta:Cleaner",
"location" : "basement",
"children" : [
 {

 "obix" : "int",
 "name" : "operationState",
 "val" : 2,
 “display” : “Start:Homing:Stop:Charging”
 }, {
 "obix" : "int",
 "name" : "batteryState",
 "val" : 1,
 "display" : "Low:Middle:High"
 }, {
 "obix" : "int",
 "name" : "cleaningMode",
 "val" : 0,
 "display" : "Manual:Spot:ZigZag:CellByCell"
 }]
}

Following an exemplary message flow is denoted:

Client Server

Client initiates action on its own timing
Connect to WebSocket server: wss://myhome?encoding=obix



- 31 -



Server sends message in response to connection from Client
Returns the Lobby:

{
 "obix" : "obj",
 "is" : "obix:Lobby",
 "children" : [{
 "obix" : "ref",
 "name" : "about",
 "is" : "obix:About",
 “href” : “/about”
 }, {
 "obix" : "op",
 "name" : "batch",
 "in" : "obix:BatchIn",
 "out" : "obix:BatchOut"
 }, {
 "obix" : "ref",
 "name" : "watchService",
 "is" : "obix:WatchService"
 “href” : “/watchService”
 }, {
 "obix" : "ref",
 "name" : "device",
 “href” : “/device”,
 "is" : "gateway:Device"
 }]
}

Client Server

Client reads an about object:

{
 "obix" : "obj",
 “is" : “obix:Read",
 “rid” : 1,
 “href" : “/about“
}





Server sends message in response to read request from Client

{
 “obix” : “obj”,
 “is” : “obix:Response”,
 “rid” : 1, “children” : [{
 "obix" : "obj",
 "href" : "/about",
 "name" : "about",
 "children" : [{
 "obix" : "str",
 "name" : "stashVersion",
 "val" : "1.0“
 },{
 "obix" : "str",
 "name" : "deviceId",
 "val" : "uniqueId”
 },{
 "obix" : "str",
 "name" : "vendorCode",
 "val" : "uniqueVendorCode“
 },{
 "obix" : "str",
 "name" : "productName",
 "val" : "productName”
 },{
 "obix" : "str",
 "name" : "productVersion",
 "val" : "productVersion”
 },{
 "obix" : "str",
 "name" : "productContract“,
 "val" : "sta:Washer”

- 32 -

 },{
 "obix" : "uri",
 "name" : "supportUrl",
 "val" : "http://www.smarttv-alliance.org“
 }]
 }]
}

Client reads a device object

{
 "obix" : "obj",
 “is" : “obix:Read",
 “rid” : 2,
 “href” : “/device”
}





Server sends message in response to read request from Client

{
 "obix" : "obj",
 "is" : "obix:Response",
 "rid" : "1",
 "children" : [{
 "obix" : "list",
 "of" : "obj",
 "name" : "device",
 “href” : “/device”
 "children" : [{
 "is" : "sta:Washer",
 "location" : "home",
 "name" : "washer",
 “href” : “/device/washer”
 "children" : [{
 "name" : "status",
 "value" : false,
 "writeable" : false,
 "display" : "",
 "obix" : "bool"
 }, {
 "name" : "power",
 "value" : 0.0,
 "writeable" : false,
 "display" : null,
 "obix" : "real"
 }, {
 "name" : "energy",
 "value" : 0.0,
 "writeable" : false,
 "display" : null,
 "obix" : "real"
 }, {
 "name" : "error",
 "value" : "",
 "writeable" : false,
 "display" : null,
 "obix" : "str"
 }, {
 "name" : "powerState",
 "value" : 0,
 "writeable" : true,
 "display" : "Off:On:Standby",
 "obix" : "int"
 }, {
 "name" : "stage",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Washing:Rinsing:Spinning",
 "obix" : "int"
 }, {
 "name" : "operationState",
 "value" : 0,

- 33 -

 "writeable" : true,
 "display" : "Idle:Progress:Suspended:Finished",
 "obix" : "int"
 }, {
 "name" : "washProgram",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Wool:Jeans:Colored:Hot wash",
 "obix" : "int"
 }, {
 "name" : "spinSpeed",
 "value" : 0,
 "writeable" : true,
 "display" : "0:800:900:1000:1100:1200:1300:1400",
 "obix" : "int"
 }, {
 "name" : "remainingTime",
 "value" : 0,
 "writeable" : false,
 "display" : null,
 "obix" : "int"
 }]
 }]
 }]

Client Server

Client creates a watch:

{
 "obix" : "obj",
 "is" : "obix:Invoke",
 "rid" : 1,
 "href" : "/watchService/make"
}





Server sends message in response to watch request from Client

{
 "obix" : "obj",
 "is" : "obix:Response",
 "rid" : 1,
 "children" : [{
 "obix" : "obj",
 "href" : "/watch/1",
 "is" : "obix:Watch"
 }]
}

Client adds /device to the watch:

{
 "obix" : "obj",
 "is" : "obix:Invoke",
 "href" : "/watch/1/add,
 "rid" : 2,
 "children" : [{
 "obix" : "obj",
 "is" : "obix:WatchIn",
 "children" : [{
 "obix" : "list",
 "names" : "hrefs",
 "children" : [{
 "obix" : "uri",
 "val" : "/device/"
 }]
 }]
 }]
}



- 34 -



Server sends message in response to watch request from Client

{
 "obix" : "obj",
 "is" : "obix:Response",
 "rid" : "1",
 "children" : [{
 “obix” : “obj”,
 “is” : “obix:WatchOut”,
 “children” : [{
 "obix" : "list",
 "of" : "obj",
 "name" : "device",
 “href” : “/device”
 "children" : [{
 "is" : "sta:Washer",
 "location" : "home",
 "name" : "washer",
 “href” : “/device/washer”
 "children" : [{
 "name" : "status",
 "value" : false,
 "writeable" : false,
 "display" : "",
 "obix" : "bool"
 }, {
 "name" : "power",
 "value" : 0.0,
 "writeable" : false,
 "display" : null,
 "obix" : "real"
 }, {
 "name" : "energy",
 "value" : 0.0,
 "writeable" : false,
 "display" : null,
 "obix" : "real"
 }, {
 "name" : "error",
 "value" : "",
 "writeable" : false,
 "display" : null,
 "obix" : "str"
 }, {
 "name" : "powerState",
 "value" : 0,
 "writeable" : true,
 "display" : "Off:On:Standby",
 "obix" : "int"
 }, {
 "name" : "stage",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Washing:Rinsing:Spinning",
 "obix" : "int"
 }, {
 "name" : "operationState",
 "value" : 0,
 "writeable" : true,
 "display" : "Idle:Progress:Suspended:Finished",
 "obix" : "int"
 }, {
 "name" : "washProgram",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Wool:Jeans:Colored:Hot wash",
 "obix" : "int"
 }, {
 "name" : "spinSpeed",
 "value" : 0,
 "writeable" : true,
 "display" : "0:800:900:1000:1100:1200:1300:1400",
 "obix" : "int"

- 35 -

 }, {
 "name" : "remainingTime",
 "value" : 0,
 "writeable" : false,
 "display" : null,
 "obix" : "int"
 }]
 }]
 }]
 }]
}

Client Server

Client sends property update of property "powerState" of device "Washer"

{
 "obix" : "obj",
 "is" : "obix:Write",
 “href” : “/device/washer”
 "rid" : "2",
 "children" : [{
 "obix" : "int",
 "name" : "washingProgram",
 "val" : "2"
 }]
}





Server sends message response to the write request

{
 "obix" : "obj",
 "is" : "obix:Response",
 "children" : [{
 "is" : "sta:Washer",
 "location" : "home",
 "name" : "washer",
 "children" : [{
 "name" : "status",
 "value" : false,
 "writeable" : false,
 "obix" : "Bool"
 }, {
 "name" : "power",
 "value" : 0.0,
 "writeable" : false,
 "obix" : "real"
 }, {
 "name" : "energy",
 "value" : 0.0,
 "writeable" : false,
 "obix" : "real"
 }, {
 "name" : "error",
 "value" : "",
 "writeable" : false,
 "obix" : "str"
 }, {
 "name" : "powerState",
 "value" : 2,
 "writeable" : true,
 "display" : "Off:On:Standby",
 "obix" : "int"
 }, {
 "name" : "washingStage",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Washing:Rinsing:Spinning",
 "obix" : "int"
 }, {
 "name" : "operationState",
 "value" : 0,
 "writeable" : true,

- 36 -

 "display" : "Idle:Progress:Suspended:Finished",
 "obix" : "int"
 }, {
 "name" : "washingProgram",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Wool:Jeans:Colored:Hot wash",
 "obix" : "int"
 }, {
 "name" : "spinSpeed",
 "value" : 0,
 "writeable" : true,
 "display" : "0:800:900:1000:1100:1200:1300:1400",
 "obix" : "int"
 }, {
 "name" : "remainingTime",
 "value" : 0,
 "writeable" : false,
 "obix" : "int"
 }]
 }]
}



Server asynchronously sends message once the device that was added in
watch is updated

{
 "obix" : "obj",
 "is" : "obix:Update",
 "children" : [{
 “obix” : “obj”,
 “is” : “obix:WatchOut”,
 “children” : [{
 "obix" : "list",
 "of" : "obj",
 "name" : "device",
 “href” : “/device”
 "children" : [{
 "is" : "sta:Washer",
 "location" : "home",
 "name" : "washer",
 "children" : [{
 "name" : "status",
 "value" : false,
 "writeable" : false,
 "obix" : "Bool"
 }, {
 "name" : "power",
 "value" : 10.0,
 "writeable" : false,
 "obix" : "real"
 }, {
 "name" : "energy",
 "value" : 0.0,
 "writeable" : false,
 "obix" : "real"
 }, {
 "name" : "error",
 "value" : "",
 "writeable" : false,
 "obix" : "str"
 }, {
 "name" : "powerState",
 "value" : 2,
 "writeable" : true,
 "display" : "Off:On:Standby",
 "obix" : "int"
 }, {
 "name" : "washingStage",
 "value" : 0,
 "writeable" : true,
 "display" : "None:Washing:Rinsing:Spinning",
 "obix" : "int"
 }, {

- 37 -

 "name" : "operationState",
 "value" : 0,
 "writeable" : true,
 "display" : "Idle:Progress:Suspended:Finished",
 "obix" : "int"
 }, {
 "name" : "washingProgram",
 "value" : 2,
 "writeable" : true,
 "display" : "None:Wool:Jeans:Colored:Hot wash",
 "obix" : "int"
 }, {
 "name" : "spinSpeed",
 "value" : 0,
 "writeable" : true,
 "display" : "0:800:900:1000:1100:1200:1300:1400",
 "obix" : "int"
 }, {
 "name" : "remainingTime",
 "value" : 0,
 "writeable" : false,
 "obix" : "int"
 }]
 }]
 }]
 }]
}

Client Server

Client sends property update of read-only property "powerState"

{
 "obix" : "obj",
 "is" : "obix:Write",
 “href” : “/device/washer”
 "rid" : "2",
 "children" : [{
 "obix" : "int",
 "name" : "powerState",
 "val" : "2"
 }]
}





Server sends an error response to the write request

{
 "obix" : "obj",
 "is" : "obix:Response",
 “rid” : “5”
 "children" : [{
 "obix" : "PermissionErr",
 }]
}

Client Server

Client sends message on its own timing
Disconnect from wss://myhome/ 

 Server disconnects from Client

- 38 -

Annex G. STASH JavaScript Library Example
Provide the application developers with a JavaScript API to write an application like below:

// load existing appliances/devices from local storage for all endpoints
var devices = stash.getDevices();

// manually add new endpoint
var epName = "Appliance1";
var epAddress = "wss://user:password@192.168.0.2";
var allEndpoints = stash.getEndpoints();
for (var ep in allEndpoints) {
 if (allEndpoints[ep].name == epName) {
 log("Endpoint name already in use");
 return;
 } else if (allEndpoints[ep].endpointAddress == epAddress) {
 log("Endpoint with address: " + epAddress + " already added");
 return;
 }
}
stash.addEndpoint(epName, epAddress);
var endpoint = stash.getEndpoint(epName);
endpoint.ondeviceupdate = function() {
 // on device updates this function will get called
};

// load an appliance via the device name from the list of existing devices
var washingMachine = stash.getDevice("WashingMachineBasement");

// read / monitor appliance status and properties
if (washingMashine.getProperty("status") == 1
 && washingMachine.getProperty("stage") == 0) {
 // control appliance
 washingMachine.setProperty("washProgram ", 1);
}

	1. Introduction
	1.1. Overview
	1.2. Definitions
	1.3. References
	1.4. Trademarks and copyrights

	2. Technical Specification
	2.1. Introduction
	2.2. Discovery
	2.2.1. SSDP
	2.2.2. Zeroconf (mDNS+DNS-SD)
	2.3. Connection
	2.4. Transport Protocol: Simple Variant
	2.4.1. Transaction Message Format
	2.4.2. Device Message Format
	2.4.3. Operations
	Get devices
	Set status properties
	Get status properties
	Set device attributes
	Get device attributes
	Notification and error reporting

	2.4.4. Vendor Dependent Extension

	2.5. Transport Protocol: OBIX Variant
	2.6. Orthogonal Component: Security
	2.6.1. Transport Layer Security
	2.6.2. Authentication
	2.6.3. Authorization

	3. Data Model
	3.1. Device Contract
	3.2. AirConditioner Contract
	3.3. Refrigerator Contract
	3.4. Washer Contract
	3.5. Dryer Contract
	3.6. WasherDryer Contract
	3.7. Cleaner Contract
	3.8. Light Contract

	4. STASH JavaScript Interface
	4.1. Main methods and properties
	4.2. Endpoint object methods and properties
	4.3. Device object methods and properties
	4.4. Property object properties
	4.5. Device Classes

	Annex A. Use Case: Discovery
	Annex B. Use Case: Notification
	Annex C. Use Case: Monitoring
	Annex D. Use Case: Control
	Annex E. Message Format Examples: Simple Variant
	Annex F. Message Format Examples: OBIX Variant
	Annex G. STASH JavaScript Library Example

